Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Parasit Vectors ; 15(1): 328, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123605

RESUMO

BACKGROUND: Gastropod snails remain strongly understudied, despite their important role in transmitting parasitic diseases. Knowledge of their distribution and population dynamics increases our understanding of the processes driving disease transmission. We report the first study to use high-throughput sequencing (HTS) to elucidate the population genetic structure of the hermaphroditic snail Bulinus truncatus (Gastropoda, Heterobranchia) on a regional (17-150 km) and inter-regional (1000-5400 km) scale. This snail species acts as an intermediate host of Schistosoma haematobium and Schistosoma bovis, which cause human and animal schistosomiasis respectively. METHODS: Bulinus truncatus snails were collected in Senegal, Cameroon, Egypt and France and identified through DNA barcoding. A single-end genotyping-by-sequencing (GBS) library, comprising 87 snail specimens from the respective countries, was built and sequenced on an Illumina HiSeq 2000 platform. Reads were mapped against S. bovis and S. haematobium reference genomes to identify schistosome infections, and single nucleotide polymorphisms (SNPs) were scored using the Stacks pipeline. These SNPs were used to estimate genetic diversity, assess population structure and construct phylogenetic trees of B. truncatus. RESULTS: A total of 10,750 SNPs were scored and used in downstream analyses. The phylogenetic analysis identified five clades, each consisting of snails from a single country but with two distinct clades within Senegal. Genetic diversity was low in all populations, reflecting high selfing rates, but varied between locations due to habitat variability. Significant genetic differentiation and isolation by distance patterns were observed at both spatial scales, indicating that gene flow is not strong enough to counteract the effects of population bottlenecks, high selfing rates and genetic drift. Remarkably, the population genetic differentiation on a regional scale (i.e. within Senegal) was as large as that between populations on an inter-regional scale. The blind GBS technique was able to pick up parasite DNA in snail tissue, demonstrating the potential of HTS techniques to further elucidate the role of snail species in parasite transmission. CONCLUSIONS: HTS techniques offer a valuable toolbox to further investigate the population genetic patterns of intermediate schistosome host snails and the role of snail species in parasite transmission.


Assuntos
Bulinus , Gastrópodes , Animais , Bulinus/parasitologia , Gastrópodes/genética , Genética Populacional , Humanos , Filogenia , Schistosoma haematobium/genética
2.
Int J Parasitol ; 49(13-14): 1039-1048, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31734338

RESUMO

Schistosomiasis is widely distributed along the Senegal River Basin (SRB), affecting both the human population and their livestock. Damming of the Senegal River for irrigation purposes in the 1980s induced ecological changes that resulted in a large outbreak of Schistosoma mansoni, followed a few years later by an increase and spread of Schistosoma haematobium infections. The presence of hybrid crosses between the human and cattle schistosomes, S. haematobium and Schistosoma bovis, respectively, is adding complexity to the disease epidemiology in this area, and questions the strength of the species boundary between these two species. This study aimed to investigate the epidemiology of S. haematobium, S. bovis and their hybrids along the Senegal River basin using both microsatellite genetic markers and analysis of mitochondrial and nuclear DNA markers. Human schistosome populations with a S. haematobium cox1 mtDNA profile and those with a S. bovis cox1 mtDNA profile (the so-called hybrids) appear to belong to a single randomly mating population, strongly differentiated from the pure S. bovis found in cattle. These results suggest that, in northern Senegal, a strong species boundary persists between human and cattle schistosome species and there is no prolific admixing of the populations. In addition, we found that in the SRB S. haematobium was spatially more differentiated in comparison to S. mansoni. This may be related either to the presence and susceptibility of the intermediate snail hosts, or to the colonisation history of the parasite.


Assuntos
Doenças dos Bovinos/parasitologia , Quimera/classificação , Variação Genética , Schistosoma/classificação , Schistosoma/isolamento & purificação , Esquistossomose/parasitologia , Esquistossomose/veterinária , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Quimera/genética , DNA Mitocondrial/química , DNA Mitocondrial/genética , Surtos de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/genética , Humanos , Repetições de Microssatélites , Schistosoma/genética , Esquistossomose/epidemiologia , Senegal/epidemiologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA