Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Stem Cell Rev Rep ; 14(4): 585-598, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29442223

RESUMO

The purpose of the present study was to evaluate the neural protein expression pattern of human multipotent mesenchymal stromal cells (hMSCs) treated with forskolin (free-form/FF). The study investigated forskolin's capacity to enhance intracellular levels of cyclic adenosine monophosphate (cAMP) by activating adenylate cyclase and probably by inducing neuron-like cells in vitro. In addition, because nanotechnology is a growing field of tissue engineering, we also assessed the action of a new system called the nanostructured-forskolin (NF) to examine the improvement of drug delivery. Afterwards, the cells were submitted to low-level laser irradiation to evaluate possible photobiostimulatory effects. Investigations using the immunofluorescence by confocal microscopy and Western blot methods revealed the expression of the neuronal marker ß-tubulin III. Fluorescence intensity quantification analysis using INCell Analyzer System for ß-tubulin III was used to examine significant differences. The results showed that after low-level laser irradiation exposure, there was a tendency to increase the ß-tubulin III expression in all groups, as expected in the photobiostimulation process. Notably, this process induced for irradiation was more pronounced in irradiated nanoforskolin cells (INF) compared to non-irradiated free-forskolin control cells (NFFC). However, there was also an increase in ß-tubulin III protein expression in the groups: irradiated nanocontrol cells (INC) compared to non-irradiated free-forskolin control cells (NFF) and after treatment with non-irradiated free-forskolin (NFF) and non-irradiated nanoforskolin (NNFC). We concluded that the methods using low-level laser irradiation and/or nanoparticles showed an up-regulation of neural-protein expression in hMSCs that could be used to facilitate cellular therapy protocols in the near future.


Assuntos
Células da Medula Óssea/efeitos da radiação , Lasers , Células-Tronco Mesenquimais/efeitos da radiação , Neurônios/efeitos da radiação , Tubulina (Proteína)/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos da radiação , Células Cultivadas , Colforsina/farmacologia , Relação Dose-Resposta à Radiação , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Vasodilatadores/farmacologia
2.
Mol Immunol ; 43(5): 464-72, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16337489

RESUMO

In this study, we observed the occurrence of TRBV8.1-DB2.1 V(D)J recombination in murine fetal thymus organ culture (FTOC), in which the thymic microenvironment is mimicked. Since ionizing radiation affects T-cell development, we irradiated FTOCs with gamma rays to evaluate the modulation of genes implicated in TRBV8.1-BD2.1 rearrangements. The nylon cDNA microarray method was employed to monitor the expression of 9216 genes, which were organized in coexpression clusters. Clustering analysis showed similar expression profiling of genes implicated in the V(D)J recombination and DNA double strand break (DSB) repair processes such as XRCC4, RAG-2, Artemis and DNA-PK-cs, thus suggesting overlap between the two processes. The RUNX3 gene, whose coded protein binds to the enhancers of TR genes, was also modulated and the DNA cross-linking LR1 gene, which plays a role in the opening of hairpin DNA structures and whose expression pattern is similar to Artemis, may play a role in the control of V(D)J recombination. Furthermore, our data demonstrate that the FTOC model system and cDNA microarray method are useful tools to evidentiate genes that may play a role in both processes V(D)J recombination and DNA repair.


Assuntos
Reparo do DNA/genética , Perfilação da Expressão Gênica , Timo/efeitos da radiação , VDJ Recombinases/metabolismo , Animais , Diferenciação Celular , Análise por Conglomerados , DNA Complementar/genética , Raios gama , Rearranjo Gênico da Cadeia beta dos Receptores de Antígenos dos Linfócitos T , Camundongos , Camundongos Endogâmicos BALB C , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Técnicas de Cultura de Órgãos , Reação em Cadeia da Polimerase/métodos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Linfócitos T/citologia , Linfócitos T/efeitos da radiação , Timo/embriologia , Timo/metabolismo
3.
Mol Immunol ; 42(9): 1043-8, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15829294

RESUMO

Non-manipulated inbred mouse strains constitutes an interesting model-system for in vivo studies on thymus ontogeny due to the possibility to observe the molecular events of the thymocyte maturation. In previous studies, using RT-PCR method, we have found that several immune system genes such as interleukins and MHC are differentially expressed during ontogeny of the thymus whose genes act as modulators of T-cell differentiation. To determine which other genes are modulated on a large-scale basis, we measured the levels of mRNA expression in mouse fetal thymus (14-17 days of gestation) by hybridization with cDNA microarrays containing 1,576 cDNA sequences derived from the IMAGE MTB library. T-cell maturation was monitored by detection of the T-cell receptor beta TRBV8.1-BD2.1 rearranged DNA segment. Each developmental phase of thymus, displayed a characteristic expression profile, as evaluated by the Cluster and Tree-View softwares. Genes differentially and significantly expressed were selected on the basis of significance analysis of the microarray data (SAM program). With the reclustering of only significantly expressed genes, it was possible to characterize the phases of thymus ontogeny, based on the differential profile of expression. Our method provided the detection of genes implicated in the cell signaling, such as the hematopoietic cell signal transducer gene, genes implicated in T-cell calcium influx (tyrosine phosphatase) and calcium signaling proteins (vesicle transport binding protein 3, proline rich Gla, casein kinase alpha 1 and Down syndrome homolog protein 1) and a gene important for the protein transport, including T-cell receptors chains, towards the cell membrane (Golgi SNAP receptor complex member 2). The results demonstrate that the cDNA microarray used to explore the gene expression was useful for understanding the modulation of several cell-signaling genes, including the calcium cascade pathway, which is important for individual stages of T-cell maturation and control of anergy during thymus ontogeny.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T , Hibridização Genética , Linfócitos T/metabolismo , Timo/metabolismo , Animais , Perfilação da Expressão Gênica , Rearranjo Gênico da Cadeia beta dos Receptores de Antígenos dos Linfócitos T , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Recombinação Genética , Linfócitos T/citologia , Timo/citologia , Timo/embriologia
4.
Clin Dev Immunol ; 13(2-4): 81-99, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17162352

RESUMO

The thymus is a complex organ with an epithelium formed by two main cell types, the cortical thymic epithelial (cTECs) and medullary thymic epithelial cells (mTECs), referred to as stroma. Immature thymocytes arising from the bone marrow, macrophages and dendritic cells also populate the thymus. Thymocytes evolve to mature T cells featuring cell differentiation antigens (CDs), which characterize the phenotypically distinct stages, defined as double-negative (DN), double positive (DP) and single positive (SP), based on expression of the coreceptors CD4 and CD8. The thymus is therefore implicated in T cell differentiation and during development into T cells thymocytes are in close association with the stroma. Recent evidence showed that mTECs express a diverse set of genes coding for parenchymal organ specific proteins. This phenomenon has been termed promiscuous gene expression (PGE) and has led to the reconsideration of the role of the thymus in central T cell tolerance to self-antigens, which prevents autoimmunity. The evidence of PGE is causing a reanalysis in the scope of central tolerance understanding. We summarize the evidence of PGE in the thymus, focusing particularly the use of cDNA microarray technology for the broad characterization of gene expression and demarcation of PGE emergence during thymus ontogeny.


Assuntos
Autoantígenos/imunologia , Tolerância Imunológica/imunologia , Timo/imunologia , Animais , Autoimunidade , Regulação da Expressão Gênica/imunologia , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Timo/citologia , Timo/metabolismo
5.
Immunology ; 119(3): 369-75, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16903901

RESUMO

T-cell differentiation and induction of tolerance to self-antigens occurs mainly in the thymus. Thymic stromal cells, specifically medullary thymic epithelial cells, express a diverse set of genes encoding parenchymal organ-specific proteins. This phenomenon has been termed promiscuous gene expression (PGE) and has been implicated in preventing organ-specific autoimmunity by inducing T-cell tolerance to self antigens. Early thymopoiesis and the critical factors involved in T-cell differentiation can be reproduced in vitro by murine fetal thymus organ culture (FTOC), which mimics the natural thymic microenvironment. To evaluate the occurrence of PGE in FTOC, gene expression profiling during in vitro thymic development in BALB/c mice was performed using a set of nylon cDNA microarrays containing 9216 sequences. The statistical analysis of the microarray data (sam program) revealed the temporal repression and induction of 57 parenchymal and seven lymphoid organ-specific genes. Most of the genes analysed are repressed during early thymic development (15-17 days post-coitum). The expression of the autoimmune regulator (AIRE) gene at 16 days post-coitum marks the onset of PGE. This precedes the induction of parenchymal organ genes during the late developmental phase at 20 days post-coitum. The mechanism of T-cell tolerance induction begins during fetal development and continues into adulthood. Our findings are significant because they show a fine demarcation of PGE onset, which plays a central role in induction of T-cell tolerance.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Timo/embriologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Mapeamento Cromossômico , Desenvolvimento Fetal/genética , Perfilação da Expressão Gênica/métodos , Camundongos , Camundongos Endogâmicos BALB C , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Técnicas de Cultura de Órgãos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Tolerância a Antígenos Próprios/genética , Timo/imunologia , Timo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA