Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
New Phytol ; 241(3): 1348-1360, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38029781

RESUMO

Flowers are the complex and highly diverse reproductive structures of angiosperms. Because of their role in sexual reproduction, the evolution of flowers is tightly linked to angiosperm speciation and diversification. Accordingly, the quantification of floral morphological diversity (disparity) among angiosperm subgroups and through time may give important insights into the evolutionary history of angiosperms as a whole. Based on a comprehensive dataset focusing on 30 characters describing floral structure across angiosperms, we used 1201 extant and 121 fossil flowers to measure floral disparity and explore patterns of floral evolution through time and across lineages. We found that angiosperms reached their highest floral disparity in the Early Cretaceous. However, decreasing disparity toward the present likely has not precluded the innovation of other complex traits at other morphological levels, which likely played a key role in the outstanding angiosperm species richness. Angiosperms occupy specific regions of the theoretical morphospace, indicating that only a portion of the possible floral trait combinations is observed in nature. The ANA grade, the magnoliids, and the early-eudicot grade occupy large areas of the morphospace (higher disparity), whereas nested groups occupy narrower regions (lower disparity).


Assuntos
Magnoliopsida , Filogenia , Magnoliopsida/genética , Flores/anatomia & histologia , Fósseis , Reprodução , Evolução Biológica
2.
Syst Biol ; 72(4): 837-855, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-36995161

RESUMO

Fossils are essential to infer past evolutionary processes. The assignment of fossils to extant clades has traditionally relied on morphological similarity and on apomorphies shared with extant taxa. The use of explicit phylogenetic analyses to establish fossil affinities has so far remained limited. In this study, we built a comprehensive framework to investigate the phylogenetic placement of 24 exceptionally preserved fossil flowers. For this, we assembled a new species-level data set of 30 floral traits for 1201 extant species that were sampled to capture the stem and crown nodes of all angiosperm families. We explored multiple analytical approaches to integrate the fossils into the phylogeny, including different phylogenetic estimation methods, topological-constrained analyses, and combining molecular and morphological data of extant and fossil species. Our results were widely consistent across approaches and showed minor differences in the support of fossils at different phylogenetic positions. The placement of some fossils agrees with previously suggested relationships, but for others, a new placement is inferred. We also identified fossils that are well supported within particular extant families, whereas others showed high phylogenetic uncertainty. Finally, we present recommendations for future analyses combining molecular and morphological evidence, regarding the selection of fossils and appropriate methodologies, and provide some perspectives on how to integrate fossils into the investigation of divergence times and the temporal evolution of morphological traits. [Angiosperms; fossil flowers; phylogenetic uncertainty; RoguePlots.].


Assuntos
Fósseis , Magnoliopsida , Humanos , Filogenia , Magnoliopsida/genética , Tempo , Flores/genética , Evolução Biológica
3.
New Phytol ; 240(4): 1659-1672, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37571871

RESUMO

Digital accessible biodiversity knowledge has the potential to greatly advance botanical research and guide conservation efforts. Evaluating its shortfalls is key to understanding its limits and prioritising regions in need of renewed survey efforts. We used the Royal Botanical Gardens Kew's World Checklist of Vascular Plants to parse publicly available occurrence data downloaded from the Global Biodiversity Information Facility and quantify the spatial distribution of spatial, phylogenetic, and temporal data shortfalls across Mesoamerica. After processing 3578 777 occurrence records for 32 522 species of vascular plants across Mesoamerica, we found evidence of poor data coverage: incomplete characterisation of species diversity, old occurrence records, and low phylogenetic representation. One-third of the region showed large gaps for at least one of these dimensions (hotspots) and < 15% had adequate data coverage across dimensions. Overall, the shortfalls we identified compromise the quality of digitally available occurrence data and hamper research on spatial phylogenetics and species dynamics under anthropogenic disturbances. Our analyses identified areas of opportunity for increased efforts in data digitisation, botanical exploration, sequencing, and biodiversity monitoring. These efforts would serve to increase and rejuvenate knowledge on the geographic distribution of vascular plants in Mesoamerica.


Assuntos
Plantas , Traqueófitas , Filogenia , Biodiversidade , Conservação dos Recursos Naturais
4.
Mol Phylogenet Evol ; 181: 107714, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36708940

RESUMO

Anchored Hybrid Enrichment (AHE) is a tool for capturing orthologous regions of the nuclear genome shared in low or single copy across lineages. Despite the increasing number of studies using this method, its usefulness to estimate relationships at deeper taxonomic levels in plants has not been fully explored. Here we present a proof of concept about the performance of nuclear loci obtained with AHE to infer phylogenetic relationships and explore the use of gene sampling schemes to estimate divergence times in Asterales. We recovered low-copy nuclear loci using the AHE method from herbarium material and silica-preserved samples. Maximum likelihood, Bayesian inference, and coalescence approaches were used to reconstruct phylogenomic relationships. Dating analyses were conducted under a multispecies coalescent approach by jointly inferring species tree and divergence times with random gene sampling schemes and multiple calibrations. We recovered 403 low-copy nuclear loci for 63 species representing nine out of eleven families of Asterales. Phylogenetic hypotheses were congruent among the applied methods and previously published results. Analyses with concatenated datasets were strongly supported, but coalescence-based analyses showed low support for the phylogenetic position of families Argophyllaceae and Alseuosmiaceae. Estimated family ages were congruent among gene sampling schemes, with the mean age for Asterales around 130 Myr. Our study documents the usefulness of AHE for resolving phylogenetic relationships at deep phylogenetic levels in Asterales. Observed phylogenetic inconsistencies were possibly due to the non-inclusion of families Phellinceae and Pentaphragmataceae. Random gene sampling schemes produced consistent age estimates with coalescence and species tree relaxed clock approaches.


Assuntos
Magnoliopsida , Filogenia , Magnoliopsida/genética , Teorema de Bayes , Genoma , Núcleo Celular/genética
5.
J Exp Bot ; 73(12): 3840-3853, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35438718

RESUMO

The origin of flowering plants (angiosperms) was one of the most transformative events in the history of our planet. Despite considerable interest from multiple research fields, numerous questions remain, including the age of the group as a whole. Recent studies have reported a perplexing range of estimates for the crown-group age of angiosperms, from ~140 million years (Ma; Early Cretaceous) to 270 Ma (Permian). Both ends of the spectrum are now supported by both macroevolutionary analyses of the fossil record and fossil-calibrated molecular dating analyses. Here, we first clarify and distinguish among the three ages of angiosperms: the age of their divergence with acrogymnosperms (stem age); the age(s) of emergence of their unique, distinctive features including flowers (morphological age); and the age of the most recent common ancestor of all their living species (crown age). We then demonstrate, based on recent studies, that fossil-calibrated molecular dating estimates of the crown-group age of angiosperms have little to do with either the amount of molecular data or the number of internal fossil calibrations included. Instead, we argue that this age is almost entirely conditioned by its own prior distribution (typically a calibration density set by the user in Bayesian analyses). Lastly, we discuss which future discoveries or novel types of analyses are most likely to bring more definitive answers. In the meantime, we propose that the age of angiosperms is best described as largely unknown (140-270 Ma) and that contrasting age estimates in the literature mostly reflect conflicting prior distributions. We also suggest that future work that depends on the time scale of flowering plant diversification be designed to integrate over this vexing uncertainty.


Assuntos
Evolução Biológica , Fósseis , Magnoliopsida , Teorema de Bayes , Evolução Molecular , Magnoliopsida/genética , Filogenia , Tempo
6.
New Phytol ; 229(5): 2998-3008, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33078849

RESUMO

Human introductions of species beyond their natural ranges and their subsequent establishment are defining features of global environmental change. However, naturalized plants are not uniformly distributed across phylogenetic lineages, with some families contributing disproportionately more to the global alien species pool than others. Additionally, lineages differ in diversification rates, and high diversification rates have been associated with characteristics that increase species naturalization success. Here, we investigate the role of diversification rates in explaining the naturalization success of angiosperm plant families. We use five global data sets that include native and alien plant species distribution, horticultural use of plants, and a time-calibrated angiosperm phylogeny. Using phylogenetic generalized linear mixed models, we analysed the effect of diversification rate, different geographical range measures, and horticultural use on the naturalization success of plant families. We show that a family's naturalization success is positively associated with its evolutionary history, native range size, and economic use. Investigating interactive effects of these predictors shows that native range size and geographic distribution additionally affect naturalization success. High diversification rates and large ranges increase naturalization success, especially of temperate families. We suggest this may result from lower ecological specialization in temperate families with large ranges, compared with tropical families with smaller ranges.


Assuntos
Ecossistema , Plantas , Geografia , Espécies Introduzidas , Filogenia , Plantas/genética
7.
Am J Bot ; 107(10): 1433-1448, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33026116

RESUMO

PREMISE: Significant paleobotanical discoveries in recent decades have considerably improved our understanding of the early evolution of angiosperms and their flowers. However, our ability to test the systematic placement of fossil flowers on the basis of phylogenetic analyses has remained limited, mainly due to the lack of an adequate, angiosperm-wide morphological data set for extant taxa. Earlier attempts to place fossil flowers phylogenetically were, therefore, forced to make prior qualitative assessments of the potential systematic position of fossils and to restrict phylogenetic analyses to selected angiosperm subgroups. METHODS: We conduct angiosperm-wide molecular backbone analyses of 10 fossil flower taxa selected from the Cretaceous record. Our analyses make use of a floral trait data set built within the framework of the eFLOWER initiative. We provide an updated version of this data set containing data for 28 floral and two pollen traits for 792 extant species representing 372 angiosperm families. RESULTS: We find that some fossils are placed congruently with earlier hypotheses while others are found in positions that had not been suggested previously. A few take up equivocal positions, including the stem branches of large clades. CONCLUSIONS: Our study provides an objective approach to test for the phylogenetic position of fossil flowers across angiosperms. Such analyses may provide a complementary tool for paleobotanical studies, allowing for a more comprehensive understanding of fossil phylogenetic relationships in angiosperms. Ongoing work focused on extending the sampling of extant taxa and the number of floral traits will further improve the applicability and accuracy of our approach.


Assuntos
Fósseis , Magnoliopsida , Evolução Biológica , Flores , Magnoliopsida/genética , Filogenia , Pólen
8.
Ann Bot ; 123(3): 491-503, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30376040

RESUMO

BACKGROUND AND AIMS: As angiosperms became one of the megadiverse groups of macroscopic eukaryotes, they forged modern ecosystems and promoted the evolution of extant terrestrial biota. Unequal distribution of species among lineages suggests that diversification, the process that ultimately determines species richness, acted differentially through angiosperm evolution. METHODS: We investigate how angiosperms became megadiverse by identifying the phylogenetic and temporal placement of exceptional radiations, by combining the most densely fossil-calibrated molecular clock phylogeny with a Bayesian model that identifies diversification shifts among evolutionary lineages and through time. We evaluate the effect of the prior number of expected shifts in the phylogenetic tree. KEY RESULTS: Major diversification increases took place over 100 Ma, from the Early Cretaceous to the end of the Paleogene, and are distributed across the angiosperm phylogeny. The long-term diversification trajectory of angiosperms shows moderate rate variation, but is underlain by increasing speciation and extinction, and results from temporally overlapping, independent radiations and depletions in component lineages. CONCLUSIONS: The identified deep time diversification shifts are clues to the identification of ultimate drivers of angiosperm megadiversity, which probably involve multivariate interactions among intrinsic traits and extrinsic forces. An enhanced understanding of angiosperm diversification will involve a more precise phylogenetic location of diversification shifts, and integration of fossil information.


Assuntos
Evolução Biológica , Magnoliopsida , Filogenia , Adaptação Biológica , Teorema de Bayes , Evolução Molecular , Fósseis/anatomia & histologia
9.
New Phytol ; 219(4): 1170-1187, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29577323

RESUMO

Contents Summary 1170 I. Introduction 1170 II. Six key questions 1172 III. Three key challenges 1177 IV. Conclusions 1181 Acknowledgements 1182 References 1183 SUMMARY: The origin and rapid diversification of angiosperms (flowering plants) represent one of the most intriguing topics in evolutionary biology. Despite considerable progress made in complementary fields over the last two decades (paleobotany, phylogenetics, ecology, evo-devo, genomics), many important questions remain. For instance, what has been the impact of mass extinctions on angiosperm diversification? Are the angiosperms an adaptive radiation? Has morphological evolution in angiosperms been gradual or pulsed? We propose that the recent and ongoing revolution in macroevolutionary methods provides an unprecedented opportunity to explore long-standing questions that probably hold important clues to understand present-day biodiversity. We present six key questions that explore the origin and diversification of angiosperms. We also identify three key challenges to address these questions: (1) the development of new integrative models that include diversification, multiple intrinsic and environmental traits, biogeography and the fossil record all at once, whilst accounting for sampling bias and heterogeneity of macroevolutionary processes through time and among lineages; (2) the need for large and standardized synthetic databases of morphological variation; and (3) continuous effort on sampling the fossil record, but with a revolution in current paleobotanical practice.


Assuntos
Evolução Biológica , Magnoliopsida/fisiologia , Biodiversidade , Flores/fisiologia , Filogenia , Fatores de Tempo
10.
Mol Phylogenet Evol ; 124: 37-49, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29486237

RESUMO

The family Curculionidae (Coleoptera), the "true" weevils, have diversified tightly linked to the evolution of flowering plants. Here, we aim to assess diversification at a lower taxonomic level. We analyze the evolution of the genus Trichobaris in association with their host plants. Trichobaris comprises eight to thirteen species; their larvae feed inside the fruits of Datura spp. or inside the stem of wild and cultivated species of Solanaceae, such as potato, tobacco and tomato. We ask the following questions: (1) does the rostrum of Trichobaris species evolve according to the plant tissue used to oviposit, i.e., shorter rostrum to dig in stems and longer to dig in fruits? and (2) does Trichobaris diversify mainly in relation to the use of Datura species? For the first question, we estimated the phylogeny of Trichobaris based on four gene sequences (nuclear 18S and 28S rRNA genes and mitochondrial 16S rRNA and COI genes). Then, we carried out morphogeometric analyses of the Trichobaris species using 75 landmarks. For the second question, we calibrated a COI haplotype phylogeny using a constant rate of divergence to infer the diversification time of Trichobaris species, and we traced the host plant species on the haplotype network. We performed an ancestral state reconstruction analysis to infer recent colonization events and conserved associations with host plant species. We found that ancestral species in the Trichobaris phylogeny use the stem of Solanum plants for oviposition and display weak sexual dimorphism of rostrum size, whereas other, more recent species of Trichobaris display sexual dimorphism in rostrum size and use the fruits of Datura species, and a possible reversion to use the stem of Solanaceae was detected in one Trichobaris species. The use of Datura species by Trichobaris species is widely distributed on haplotype networks and restricted to Trichobaris species that originated ca. 5 ±â€¯1.5 Ma. Given that the origin of Trichobaris is estimated to be ca. 6 ±â€¯1.5 Ma, it is likely that Datura has played a role in its diversification.


Assuntos
Interações Hospedeiro-Parasita , Filogenia , Filogeografia , Plantas/parasitologia , Gorgulhos/anatomia & histologia , Gorgulhos/classificação , Animais , Teorema de Bayes , Calibragem , Complexo IV da Cadeia de Transporte de Elétrons/genética , Variação Genética , Geografia , Haplótipos/genética , RNA Ribossômico 16S/genética , Especificidade da Espécie , Gorgulhos/genética
11.
Mol Phylogenet Evol ; 126: 92-104, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29574271

RESUMO

Arid biomes are particularly prominent in the Neotropics providing some of its most emblematic landscapes and a substantial part of its species diversity. To understand some of the evolutionary processes underlying the speciation of lineages in the Mexican Deserts, the diversification of Fouquieria is investigated, which includes eleven species, all endemic to the warm deserts and dry subtropical regions of North America. Using a phylogeny from plastid DNA sequences with samples of individuals from populations of all the species recognized in Fouquieria, we estimate divergence times, test for temporal diversification heterogeneity, test for geographical structure, and conduct ancestral area reconstruction. Fouquieria is an ancient lineage that diverged from Polemoniaceae ca. 75.54 Ma. A Mio-Pliocene diversification of Fouquieria with vicariance, associated with Neogene orogenesis underlying the early development of regional deserts is strongly supported. Test for temporal diversification heterogeneity indicates that during its evolutionary history, Fouquieria had a drastic diversification rate shift at ca.12.72 Ma, agreeing with hypotheses that some of the lineages in North American deserts diversified as early as the late Miocene to Pliocene, and not during the Pleistocene. Long-term diversification dynamics analyses suggest that extinction also played a significant role in Fouquieria's evolution, with a very high rate at the onset of the process. From the late Miocene onwards, Fouquieria underwent substantial diversification change, involving high speciation decreasing to the present and negligible extinction, which is congruent with its scant fossil record during this period. Geographic phylogenetic structure and the pattern of most sister species inhabiting different desert nucleus support that isolation by distance could be the main driver of speciation.


Assuntos
Clima Desértico , Ericales/classificação , Filogenia , Biodiversidade , Fósseis , Especiação Genética , Geografia , Funções Verossimilhança , América do Norte , Software , Fatores de Tempo , Estados Unidos
12.
Syst Biol ; 66(3): 367-378, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003532

RESUMO

The relationship between clade age and species richness has been increasingly used in macroevolutionary studies as evidence for ecologically versus time-dependent diversification processes. However, theory suggests that phylogenetic structure, age type (crown or stem age), and taxonomic delimitation can affect estimates of the age-richness correlation (ARC) considerably. We currently lack an integrative understanding of how these different factors affect ARCs, which in turn, obscures further interpretations. To assess its informative breadth, we characterize ARC behavior with simulated and empirical phylogenies, considering phylogenetic structure and both crown and stem ages. First, we develop a two-state birth-death model to simulate phylogenies including the origin of higher taxa and a hierarchical taxonomy to determine ARC expectations under ecologically and time-dependent diversification processes. Then, we estimate ARCs across various taxonomic ranks of extant amphibians, squamate reptiles, mammals, birds, and flowering plants. We find that our model reproduces the general ARC trends of a wide range of biological systems despite the particularities of taxonomic practice within each, suggesting that the model is adequate to establish a framework of ARC null expectations for different diversification processes when taxa are defined with a hierarchical taxonomy. ARCs estimated with crown ages were positive in all the scenarios we studied, including ecologically dependent processes. Negative ARCs were only found at less inclusive taxonomic ranks, when considering stem age, and when rates varied among clades. This was the case both in ecologically and time-dependent processes. Together, our results warn against direct interpretations of single ARC estimates and advocate for a more integrative use of ARCs across age types and taxonomic ranks in diversification studies. [Birth-Death models; crown age; diversity dependence; extinction; phylogenetic structure; speciation; stem age; taxonomy; time dependence; tree simulations.].


Assuntos
Biodiversidade , Classificação/métodos , Modelos Biológicos , Filogenia , Animais , Especiação Genética , Magnoliopsida
13.
Mol Phylogenet Evol ; 117: 124-134, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28189618

RESUMO

We conducted a pilot study using Anchored Hybrid Enrichment to resolve relationships among a mostly Neotropical sage lineage that may have undergone a recent evolutionary radiation. Conventional markers (ITS, trnL-trnF and trnH-psbA) have not been able to resolve the relationships among species nor within portions of the backbone of the lineage. We sampled 12 representative species of subgenus Calosphace and included one species of Salvia's s.l. closest relative, Lepechinia, as outgroup. Hybrid enrichment and sequencing were successful, yielding 448 alignments of individual loci with an average length of 704bp. The performance of the phylogenomic data in phylogenetic reconstruction was superior to that of conventional markers, increasing both support and resolution. Because the captured loci vary in the amount of net phylogenetic informativeness at different phylogenetic depths, these data are promising in phylogenetic reconstruction of this group and likely other lineages within Lamiales. However, special attention should be placed on the amount of phylogenetic noise that the data could potentially contain. A prior exploration step using phylogenetic informativeness profiles to detect loci with sites with disproportionately high substitution rates (showing "phantom" spikes) and, if required, the ensuing filtering of the problematic data is recommended. In our dataset, filtering resulted in increased support and resolution for the shallow nodes in maximum likelihood phylogenetic trees resulting from concatenated analyses of all the loci. Additionally, it is expected that an increase in sampling (loci and taxa) will aid in resolving weakly supported, short deep internal branches.


Assuntos
Filogenia , Salvia/genética , Loci Gênicos/genética , Marcadores Genéticos/genética , Projetos Piloto , Análise de Sequência de DNA
14.
Proc Biol Sci ; 283(1830)2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27147092

RESUMO

Why are some traits and trait combinations exceptionally common across the tree of life, whereas others are vanishingly rare? The distribution of trait diversity across a clade at any time depends on the ancestral state of the clade, the rate at which new phenotypes evolve, the differences in speciation and extinction rates across lineages, and whether an equilibrium has been reached. Here we examine the role of transition rates, differential diversification (speciation minus extinction) and non-equilibrium dynamics on the evolutionary history of angiosperms, a clade well known for the abundance of some trait combinations and the rarity of others. Our analysis reveals that three character states (corolla present, bilateral symmetry, reduced stamen number) act synergistically as a key innovation, doubling diversification rates for lineages in which this combination occurs. However, this combination is currently less common than predicted at equilibrium because the individual characters evolve infrequently. Simulations suggest that angiosperms will remain far from the equilibrium frequencies of character states well into the future. Such non-equilibrium dynamics may be common when major innovations evolve rarely, allowing lineages with ancestral forms to persist, and even outnumber those with diversification-enhancing states, for tens of millions of years.


Assuntos
Flores/anatomia & histologia , Flores/fisiologia , Magnoliopsida/fisiologia , Biodiversidade , Evolução Biológica , Modelos Biológicos , Filogenia , Característica Quantitativa Herdável , Processos Estocásticos
15.
Mol Phylogenet Evol ; 100: 41-50, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27063196

RESUMO

The complex evolutionary history of the subtribe Physalinae is reflected in the poor resolution of the relationships of Physalis and the physaloid genera. We hypothesize that this low resolution is caused by recent evolutionary history in a complex geographic setting. The aims of this study were twofold: (1) To determine the phylogenetic relationships of the current genera recognized in Physalinae in order to identify monophyletic groups and resolve the physaloid grade; and (2) to determine the probable causes of the recent divergence in Physalinae. We conducted phylogenetic analyses with maximum likelihood (ML) and Bayesian inference with 50 Physalinae species and 19 others as outgroups, using morphological and molecular data from five plastid and two nuclear regions. A relaxed molecular clock was obtained from the ML topology and ancestral area reconstruction was conducted using the DEC model. The genera Chamaesaracha, Leucophysalis, and Physalis subgenus Rydbergis were recovered as monophyletic. Three clades, Alkekengi-Calliphysalis, Schraderanthus-Tzeltalia, and Witheringia-Brachistus, also received good support. However, even with morphological data and that of the DNA of seven regions, the tree was not completely resolved and many clades remained unsupported. Physalinae diverged at the end of the Miocene (∼9.22Mya) with one trend indicating that the greatest diversification within the subtribe occurred during the last 5My. The Neotropical region presented the highest probability (45%) of being the ancestral area of Physalinae followed by the Mexican Transition Zone (35%). During the Pliocene and Pleistocene, the geographical areas where species were found experienced significant geological and climatic changes, giving rise to rapid and relatively recent diversification events in Physalinae. Thus, recent origin, high diversification, and morphological complexity have contributed, at least with the currently available methods, to the inability to completely disentangle the phylogenetic relationships of Physalinae.


Assuntos
Evolução Biológica , Physalis/classificação , Physalis/genética , Teorema de Bayes , Núcleo Celular/genética , DNA de Cloroplastos/genética , DNA de Plantas/genética , Variação Genética , Filogenia , Fatores de Tempo
16.
New Phytol ; 207(2): 437-453, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25615647

RESUMO

The establishment of modern terrestrial life is indissociable from angiosperm evolution. While available molecular clock estimates of angiosperm age range from the Paleozoic to the Late Cretaceous, the fossil record is consistent with angiosperm diversification in the Early Cretaceous. The time-frame of angiosperm evolution is here estimated using a sample representing 87% of families and sequences of five plastid and nuclear markers, implementing penalized likelihood and Bayesian relaxed clocks. A literature-based review of the palaeontological record yielded calibrations for 137 phylogenetic nodes. The angiosperm crown age was bound within a confidence interval calculated with a method that considers the fossil record of the group. An Early Cretaceous crown angiosperm age was estimated with high confidence. Magnoliidae, Monocotyledoneae and Eudicotyledoneae diversified synchronously 135-130 million yr ago (Ma); Pentapetalae is 126-121 Ma; and Rosidae (123-115 Ma) preceded Asteridae (119-110 Ma). Family stem ages are continuously distributed between c. 140 and 20 Ma. This time-frame documents an early phylogenetic proliferation that led to the establishment of major angiosperm lineages, and the origin of over half of extant families, in the Cretaceous. While substantial amounts of angiosperm morphological and functional diversity have deep evolutionary roots, extant species richness was probably acquired later.


Assuntos
Sequência de Bases , Biodiversidade , Evolução Biológica , Fósseis , Magnoliopsida/genética , Filogenia , Teorema de Bayes , Núcleo Celular , DNA de Plantas/análise , Evolução Molecular , Plastídeos , Análise de Sequência de DNA
17.
Ecol Lett ; 17(5): 527-36, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24589190

RESUMO

The Amazon rain forest sustains the world's highest tree diversity, but it remains unclear why some clades of trees are hyperdiverse, whereas others are not. Using dated phylogenies, estimates of current species richness and trait and demographic data from a large network of forest plots, we show that fast demographic traits--short turnover times--are associated with high diversification rates across 51 clades of canopy trees. This relationship is robust to assuming that diversification rates are either constant or decline over time, and occurs in a wide range of Neotropical tree lineages. This finding reveals the crucial role of intrinsic, ecological variation among clades for understanding the origin of the remarkable diversity of Amazonian trees and forests.


Assuntos
Biodiversidade , Modelos Biológicos , Árvores/fisiologia , América do Sul , Clima Tropical
18.
New Phytol ; 202(4): 1382-1397, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24611540

RESUMO

Succulent plants are widely distributed, reaching their highest diversity in arid and semi-arid regions. Their origin and diversification is thought to be associated with a global expansion of aridity. We test this hypothesis by investigating the tempo and pattern of Cactaceae diversification. Our results contribute to the understanding of the evolution of New World Succulent Biomes. We use the most taxonomically complete dataset currently available for Cactaceae. We estimate divergence times and utilize Bayesian and maximum likelihood methods that account for nonrandom taxonomic sampling, possible extinction scenarios and phylogenetic uncertainty to analyze diversification rates, and evolution of growth form and pollination syndrome. Cactaceae originated shortly after the Eocene-Oligocene global drop in CO2 , and radiation of its richest genera coincided with the expansion of aridity in North America during the late Miocene. A significant correlation between growth form and pollination syndrome was found, as well as a clear state dependence between diversification rate, and pollination and growth-form evolution. This study suggests a complex picture underlying the diversification of Cactaceae. It not only responded to the availability of new niches resulting from aridification, but also to the correlated evolution of novel growth forms and reproductive strategies.


Assuntos
Cactaceae/genética , Biodiversidade , Evolução Biológica , Cactaceae/fisiologia , Filogenia
20.
Am J Bot ; 100(3): 556-73, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23445823

RESUMO

PREMISE OF THE STUDY: Land plants play an essential role in the evolution of terrestrial life. Their time of origin and diversification is fundamental to understanding the evolution of life on land. We investigated the timing and the rate of molecular evolution of land plants, evaluating the effects of different types of molecular data, including temporal information from fossils, and using different molecular clock methods. • METHODS: Ages and absolute rates were estimated independently with two substitutionally different data sets: a highly conserved 4-gene data set and matK, a fast-evolving gene. The vascular plant backbone and the crown nodes of all major lineages were calibrated with fossil-derived ages. Dates and absolute rates were estimated while including or excluding the calibrations and using two relaxed clocks that differ in their implementation of temporal autocorrelation. • KEY RESULTS: Land plants diverged from streptophyte alga 912 (870-962) million years ago (Mya) but diversified into living lineages 475 (471-480) Mya. Ages estimated for all major land-plant lineages agree with their fossil record, except for angiosperms. Different genes estimated very similar ages and correlated absolute rates across the tree. Excluding calibrations resulted in the greatest age differences. Different relaxed clocks provided similar ages, but different and uncorrelated absolute rates. • CONCLUSIONS: Whole-genome rate accelerations or decelerations may underlie the similar ages and correlated absolute rates estimated with different genes. We suggest that pronounced substitution rate changes around the angiosperm crown node may represent a challenge for relaxed clocks to model adequately.


Assuntos
Evolução Molecular , Fósseis , Genes de Plantas/genética , Plantas/genética , Filogenia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA