Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nucleic Acids Res ; 46(D1): D1062-D1067, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29165669

RESUMO

ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) is a freely available, public archive of human genetic variants and interpretations of their significance to disease, maintained at the National Institutes of Health. Interpretations of the clinical significance of variants are submitted by clinical testing laboratories, research laboratories, expert panels and other groups. ClinVar aggregates data by variant-disease pairs, and by variant (or set of variants). Data aggregated by variant are accessible on the website, in an improved set of variant call format files and as a new comprehensive XML report. ClinVar recently started accepting submissions that are focused primarily on providing phenotypic information for individuals who have had genetic testing. Submissions may come from clinical providers providing their own interpretation of the variant ('provider interpretation') or from groups such as patient registries that primarily provide phenotypic information from patients ('phenotyping only'). ClinVar continues to make improvements to its search and retrieval functions. Several new fields are now indexed for more precise searching, and filters allow the user to narrow down a large set of search results.


Assuntos
Bases de Dados de Ácidos Nucleicos , Doença/genética , Variação Genética , Humanos , Fenótipo
2.
N Engl J Med ; 372(23): 2235-42, 2015 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-26014595

RESUMO

On autopsy, a patient is found to have hypertrophic cardiomyopathy. The patient's family pursues genetic testing that shows a "likely pathogenic" variant for the condition on the basis of a study in an original research publication. Given the dominant inheritance of the condition and the risk of sudden cardiac death, other family members are tested for the genetic variant to determine their risk. Several family members test negative and are told that they are not at risk for hypertrophic cardiomyopathy and sudden cardiac death, and those who test positive are told that they need to be regularly monitored for cardiomyopathy on echocardiography. Five years later, during a routine clinic visit of one of the genotype-positive family members, the cardiologist queries a database for current knowledge on the genetic variant and discovers that the variant is now interpreted as "likely benign" by another laboratory that uses more recently derived population-frequency data. A newly available testing panel for additional genes that are implicated in hypertrophic cardiomyopathy is initiated on an affected family member, and a different variant is found that is determined to be pathogenic. Family members are retested, and one member who previously tested negative is now found to be positive for this new variant. An immediate clinical workup detects evidence of cardiomyopathy, and an intracardiac defibrillator is implanted to reduce the risk of sudden cardiac death.


Assuntos
Bases de Dados Genéticas , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença/genética , Variação Genética , Genoma Humano , Testes Genéticos , Humanos , National Library of Medicine (U.S.) , Estados Unidos
3.
Nucleic Acids Res ; 44(D1): D862-8, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26582918

RESUMO

ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) at the National Center for Biotechnology Information (NCBI) is a freely available archive for interpretations of clinical significance of variants for reported conditions. The database includes germline and somatic variants of any size, type or genomic location. Interpretations are submitted by clinical testing laboratories, research laboratories, locus-specific databases, OMIM®, GeneReviews™, UniProt, expert panels and practice guidelines. In NCBI's Variation submission portal, submitters upload batch submissions or use the Submission Wizard for single submissions. Each submitted interpretation is assigned an accession number prefixed with SCV. ClinVar staff review validation reports with data types such as HGVS (Human Genome Variation Society) expressions; however, clinical significance is reported directly from submitters. Interpretations are aggregated by variant-condition combination and assigned an accession number prefixed with RCV. Clinical significance is calculated for the aggregate record, indicating consensus or conflict in the submitted interpretations. ClinVar uses data standards, such as HGVS nomenclature for variants and MedGen identifiers for conditions. The data are available on the web as variant-specific views; the entire data set can be downloaded via ftp. Programmatic access for ClinVar records is available through NCBI's E-utilities. Future development includes providing a variant-centric XML archive and a web page for details of SCV submissions.


Assuntos
Bases de Dados Genéticas , Doença/genética , Variação Genética , Genes , Genoma Humano , Humanos
4.
Nucleic Acids Res ; 43(Database issue): D36-42, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25355515

RESUMO

The National Center for Biotechnology Information's (NCBI) Gene database (www.ncbi.nlm.nih.gov/gene) integrates gene-specific information from multiple data sources. NCBI Reference Sequence (RefSeq) genomes for viruses, prokaryotes and eukaryotes are the primary foundation for Gene records in that they form the critical association between sequence and a tracked gene upon which additional functional and descriptive content is anchored. Additional content is integrated based on the genomic location and RefSeq transcript and protein sequence data. The content of a Gene record represents the integration of curation and automated processing from RefSeq, collaborating model organism databases, consortia such as Gene Ontology, and other databases within NCBI. Records in Gene are assigned unique, tracked integers as identifiers. The content (citations, nomenclature, genomic location, gene products and their attributes, phenotypes, sequences, interactions, variation details, maps, expression, homologs, protein domains and external databases) is available via interactive browsing through NCBI's Entrez system, via NCBI's Entrez programming utilities (E-Utilities and Entrez Direct) and for bulk transfer by FTP.


Assuntos
Bases de Dados Genéticas , Genes , Variação Genética , Genômica , Internet , National Library of Medicine (U.S.) , Fenótipo , Estados Unidos
5.
Hum Mutat ; 37(6): 549-58, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26919176

RESUMO

Numerous databases containing information about DNA, RNA, and protein variations are available. Gene-specific variant databases (locus-specific variation databases, LSDBs) are typically curated and maintained for single genes or groups of genes for a certain disease(s). These databases are widely considered as the most reliable information source for a particular gene/protein/disease, but it should also be made clear they may have widely varying contents, infrastructure, and quality. Quality is very important to evaluate because these databases may affect health decision-making, research, and clinical practice. The Human Variome Project (HVP) established a Working Group for Variant Database Quality Assessment. The basic principle was to develop a simple system that nevertheless provides a good overview of the quality of a database. The HVP quality evaluation criteria that resulted are divided into four main components: data quality, technical quality, accessibility, and timeliness. This report elaborates on the developed quality criteria and how implementation of the quality scheme can be achieved. Examples are provided for the current status of the quality items in two different databases, BTKbase, an LSDB, and ClinVar, a central archive of submissions about variants and their clinical significance.


Assuntos
Bases de Dados Genéticas/normas , Variação Genética , Genoma Humano , Projeto Genoma Humano , Humanos , Controle de Qualidade
6.
Hum Mutat ; 37(6): 564-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26931183

RESUMO

The consistent and unambiguous description of sequence variants is essential to report and exchange information on the analysis of a genome. In particular, DNA diagnostics critically depends on accurate and standardized description and sharing of the variants detected. The sequence variant nomenclature system proposed in 2000 by the Human Genome Variation Society has been widely adopted and has developed into an internationally accepted standard. The recommendations are currently commissioned through a Sequence Variant Description Working Group (SVD-WG) operating under the auspices of three international organizations: the Human Genome Variation Society (HGVS), the Human Variome Project (HVP), and the Human Genome Organization (HUGO). Requests for modifications and extensions go through the SVD-WG following a standard procedure including a community consultation step. Version numbers are assigned to the nomenclature system to allow users to specify the version used in their variant descriptions. Here, we present the current recommendations, HGVS version 15.11, and briefly summarize the changes that were made since the 2000 publication. Most focus has been on removing inconsistencies and tightening definitions allowing automatic data processing. An extensive version of the recommendations is available online, at http://www.HGVS.org/varnomen.


Assuntos
Variação Genética , Projeto Genoma Humano/organização & administração , Terminologia como Assunto , Genoma Humano , Guias como Assunto , Humanos , Análise de Sequência de DNA
7.
Nucleic Acids Res ; 42(Database issue): D873-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24285302

RESUMO

Locus Reference Genomic (LRG; http://www.lrg-sequence.org/) records contain internationally recognized stable reference sequences designed specifically for reporting clinically relevant sequence variants. Each LRG is contained within a single file consisting of a stable 'fixed' section and a regularly updated 'updatable' section. The fixed section contains stable genomic DNA sequence for a genomic region, essential transcripts and proteins for variant reporting and an exon numbering system. The updatable section contains mapping information, annotation of all transcripts and overlapping genes in the region and legacy exon and amino acid numbering systems. LRGs provide a stable framework that is vital for reporting variants, according to Human Genome Variation Society (HGVS) conventions, in genomic DNA, transcript or protein coordinates. To enable translation of information between LRG and genomic coordinates, LRGs include mapping to the human genome assembly. LRGs are compiled and maintained by the National Center for Biotechnology Information (NCBI) and European Bioinformatics Institute (EBI). LRG reference sequences are selected in collaboration with the diagnostic and research communities, locus-specific database curators and mutation consortia. Currently >700 LRGs have been created, of which >400 are publicly available. The aim is to create an LRG for every locus with clinical implications.


Assuntos
Bases de Dados Genéticas , Variação Genética , Genoma Humano , Éxons , Loci Gênicos , Genômica/normas , Humanos , Internet , Proteínas/genética , RNA Mensageiro/química , Padrões de Referência
8.
Nucleic Acids Res ; 42(Database issue): D980-5, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24234437

RESUMO

ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/) provides a freely available archive of reports of relationships among medically important variants and phenotypes. ClinVar accessions submissions reporting human variation, interpretations of the relationship of that variation to human health and the evidence supporting each interpretation. The database is tightly coupled with dbSNP and dbVar, which maintain information about the location of variation on human assemblies. ClinVar is also based on the phenotypic descriptions maintained in MedGen (http://www.ncbi.nlm.nih.gov/medgen). Each ClinVar record represents the submitter, the variation and the phenotype, i.e. the unit that is assigned an accession of the format SCV000000000.0. The submitter can update the submission at any time, in which case a new version is assigned. To facilitate evaluation of the medical importance of each variant, ClinVar aggregates submissions with the same variation/phenotype combination, adds value from other NCBI databases, assigns a distinct accession of the format RCV000000000.0 and reports if there are conflicting clinical interpretations. Data in ClinVar are available in multiple formats, including html, download as XML, VCF or tab-delimited subsets. Data from ClinVar are provided as annotation tracks on genomic RefSeqs and are used in tools such as Variation Reporter (http://www.ncbi.nlm.nih.gov/variation/tools/reporter), which reports what is known about variation based on user-supplied locations.


Assuntos
Bases de Dados Genéticas , Variação Genética , Fenótipo , Genoma Humano , Genômica , Humanos , Internet
9.
Nucleic Acids Res ; 42(Database issue): D756-63, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24259432

RESUMO

The National Center for Biotechnology Information (NCBI) Reference Sequence (RefSeq) database is a collection of annotated genomic, transcript and protein sequence records derived from data in public sequence archives and from computation, curation and collaboration (http://www.ncbi.nlm.nih.gov/refseq/). We report here on growth of the mammalian and human subsets, changes to NCBI's eukaryotic annotation pipeline and modifications affecting transcript and protein records. Recent changes to NCBI's eukaryotic genome annotation pipeline provide higher throughput, and the addition of RNAseq data to the pipeline results in a significant expansion of the number of transcripts and novel exons annotated on mammalian RefSeq genomes. Recent annotation changes include reporting supporting evidence for transcript records, modification of exon feature annotation and the addition of a structured report of gene and sequence attributes of biological interest. We also describe a revised protein annotation policy for alternatively spliced transcripts with more divergent predicted proteins and we summarize the current status of the RefSeqGene project.


Assuntos
Bases de Dados Genéticas , Genômica , Mamíferos/genética , Animais , Eucariotos/genética , Éxons , Genoma , Genômica/normas , Humanos , Internet , Anotação de Sequência Molecular , Proteínas/química , Proteínas/genética , RNA/química , Padrões de Referência
10.
Nucleic Acids Res ; 41(Database issue): D1070-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23193260

RESUMO

The National Center for Biotechnology Information (NCBI) Clone DB (http://www.ncbi.nlm.nih.gov/clone/) is an integrated resource providing information about and facilitating access to clones, which serve as valuable research reagents in many fields, including genome sequencing and variation analysis. Clone DB represents an expansion and replacement of the former NCBI Clone Registry and has records for genomic and cell-based libraries and clones representing more than 100 different eukaryotic taxa. Records provide details of library construction, associated sequences, map positions and information about resource distribution. Clone DB is indexed in the NCBI Entrez system and can be queried by fields that include organism, clone name, gene name and sequence identifier. Whenever possible, genomic clones are mapped to reference assemblies and their map positions provided in clone records. Clones mapping to specific genomic regions can also be searched for using the NCBI Clone Finder tool, which accepts queries based on sequence coordinates or features such as gene or transcript names. Clone DB makes reports of library, clone and placement data on its FTP site available for download. With Clone DB, users now have available to them a centralized resource that provides them with the tools they will need to make use of these important research reagents.


Assuntos
Clonagem Molecular , Bases de Dados de Ácidos Nucleicos , Biblioteca Gênica , Animais , Mapeamento Cromossômico , Humanos , Internet , Camundongos , Análise de Sequência de DNA , Integração de Sistemas
11.
Nucleic Acids Res ; 41(Database issue): D925-35, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23193275

RESUMO

The National Institutes of Health Genetic Testing Registry (GTR; available online at http://www.ncbi.nlm.nih.gov/gtr/) maintains comprehensive information about testing offered worldwide for disorders with a genetic basis. Information is voluntarily submitted by test providers. The database provides details of each test (e.g. its purpose, target populations, methods, what it measures, analytical validity, clinical validity, clinical utility, ordering information) and laboratory (e.g. location, contact information, certifications and licenses). Each test is assigned a stable identifier of the format GTR000000000, which is versioned when the submitter updates information. Data submitted by test providers are integrated with basic information maintained in National Center for Biotechnology Information's databases and presented on the web and through FTP (ftp.ncbi.nih.gov/pub/GTR/_README.html).


Assuntos
Bases de Dados Genéticas , Testes Genéticos , Sistema de Registros , Genes , Variação Genética , Humanos , Internet , Fenótipo
12.
Nucleic Acids Res ; 40(Database issue): D130-5, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22121212

RESUMO

The National Center for Biotechnology Information (NCBI) Reference Sequence (RefSeq) database is a collection of genomic, transcript and protein sequence records. These records are selected and curated from public sequence archives and represent a significant reduction in redundancy compared to the volume of data archived by the International Nucleotide Sequence Database Collaboration. The database includes over 16,00 organisms, 2.4 × 0(6) genomic records, 13 × 10(6) proteins and 2 × 10(6) RNA records spanning prokaryotes, eukaryotes and viruses (RefSeq release 49, September 2011). The RefSeq database is maintained by a combined approach of automated analyses, collaboration and manual curation to generate an up-to-date representation of the sequence, its features, names and cross-links to related sources of information. We report here on recent growth, the status of curating the human RefSeq data set, more extensive feature annotation and current policy for eukaryotic genome annotation via the NCBI annotation pipeline. More information about the resource is available online (see http://www.ncbi.nlm.nih.gov/RefSeq/).


Assuntos
Bases de Dados Genéticas , Anotação de Sequência Molecular , Análise de Sequência/normas , Genômica/normas , Humanos , Padrões de Referência , Análise de Sequência de DNA/normas , Análise de Sequência de Proteína/normas , Análise de Sequência de RNA/normas
13.
Nucleic Acids Res ; 40(Database issue): D13-25, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22140104

RESUMO

In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Website. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central (PMC), Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Primer-BLAST, COBALT, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, Genome and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, BioProject, BioSample, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Probe, Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), Biosystems, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.


Assuntos
Bases de Dados como Assunto , Bases de Dados Genéticas , Bases de Dados de Proteínas , Expressão Gênica , Genômica , Internet , Modelos Moleculares , National Library of Medicine (U.S.) , Publicações Periódicas como Assunto , PubMed , Alinhamento de Sequência , Análise de Sequência de DNA , Análise de Sequência de Proteína , Análise de Sequência de RNA , Bibliotecas de Moléculas Pequenas , Estados Unidos
14.
Hum Mutat ; 34(4): 661-6, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23401191

RESUMO

A forum of the Human Variome Project (HVP) was held as a satellite to the 2012 Annual Meeting of the American Society of Human Genetics in San Francisco, California. The theme of this meeting was "Getting Ready for the Human Phenome Project." Understanding the genetic contribution to both rare single-gene "Mendelian" disorders and more complex common diseases will require integration of research efforts among many fields and better defined phenotypes. The HVP is dedicated to bringing together researchers and research populations throughout the world to provide the resources to investigate the impact of genetic variation on disease. To this end, there needs to be a greater sharing of phenotype and genotype data. For this to occur, many databases that currently exist will need to become interoperable to allow for the combining of cohorts with similar phenotypes to increase statistical power for studies attempting to identify novel disease genes or causative genetic variants. Improved systems and tools that enhance the collection of phenotype data from clinicians are urgently needed. This meeting begins the HVP's effort toward this important goal.


Assuntos
Bases de Dados Genéticas , Projeto Genoma Humano , Fenótipo , Biologia Computacional , Humanos
15.
Nucleic Acids Res ; 39(Database issue): D38-51, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21097890

RESUMO

In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central (PMC), Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Primer-BLAST, COBALT, Electronic PCR, OrfFinder, Splign, ProSplign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Entrez Probe, GENSAT, Online Mendelian Inheritance in Man (OMIM), Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), IBIS, Biosystems, Peptidome, OMSSA, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.


Assuntos
Bases de Dados Genéticas , Bases de Dados de Proteínas , Expressão Gênica , Genômica , National Library of Medicine (U.S.) , Estrutura Terciária de Proteína , PubMed , Alinhamento de Sequência , Análise de Sequência de DNA , Análise de Sequência de RNA , Software , Integração de Sistemas , Estados Unidos
16.
Nucleic Acids Res ; 38(Database issue): D5-16, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19910364

RESUMO

In addition to maintaining the GenBank nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR, OrfFinder, Spidey, Splign, Reference Sequence, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus, Entrez Probe, GENSAT, Online Mendelian Inheritance in Man, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool, Biosystems, Peptidome, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized data sets. All these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Bases de Dados de Ácidos Nucleicos , Algoritmos , Animais , Biologia Computacional/tendências , Bases de Dados de Proteínas , Genoma Bacteriano , Genoma Viral , Humanos , Armazenamento e Recuperação da Informação/métodos , Internet , National Institutes of Health (U.S.) , National Library of Medicine (U.S.) , Software , Estados Unidos
17.
Nucleic Acids Res ; 37(Database issue): D32-6, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18927115

RESUMO

NCBI's Reference Sequence (RefSeq) database (http://www.ncbi.nlm.nih.gov/RefSeq/) is a curated non-redundant collection of sequences representing genomes, transcripts and proteins. RefSeq records integrate information from multiple sources and represent a current description of the sequence, the gene and sequence features. The database includes over 5300 organisms spanning prokaryotes, eukaryotes and viruses, with records for more than 5.5 x 10(6) proteins (RefSeq release 30). Feature annotation is applied by a combination of curation, collaboration, propagation from other sources and computation. We report here on the recent growth of the database, recent changes to feature annotations and record types for eukaryotic (primarily vertebrate) species and policies regarding species inclusion and genome annotation. In addition, we introduce RefSeqGene, a new initiative to support reporting variation data on a stable genomic coordinate system.


Assuntos
Bases de Dados Genéticas , Análise de Sequência/normas , Animais , Éxons , Genômica/normas , Humanos , Camundongos , Proteínas/química , Pseudogenes , RNA não Traduzido/química , Padrões de Referência
18.
Nucleic Acids Res ; 37(Database issue): D417-22, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18927109

RESUMO

The 'Human Immunodeficiency Virus Type 1 (HIV-1), Human Protein Interaction Database', available through the National Library of Medicine at www.ncbi.nlm.nih.gov/RefSeq/HIVInteractions, was created to catalog all interactions between HIV-1 and human proteins published in the peer-reviewed literature. The database serves the scientific community exploring the discovery of novel HIV vaccine candidates and therapeutic targets. To facilitate this discovery approach, the following information for each HIV-1 human protein interaction is provided and can be retrieved without restriction by web-based downloads and ftp protocols: Reference Sequence (RefSeq) protein accession numbers, Entrez Gene identification numbers, brief descriptions of the interactions, searchable keywords for interactions and PubMed identification numbers (PMIDs) of journal articles describing the interactions. Currently, 2589 unique HIV-1 to human protein interactions and 5135 brief descriptions of the interactions, with a total of 14,312 PMID references to the original articles reporting the interactions, are stored in this growing database. In addition, all protein-protein interactions documented in the database are integrated into Entrez Gene records and listed in the 'HIV-1 protein interactions' section of Entrez Gene reports. The database is also tightly linked to other databases through Entrez Gene, enabling users to search for an abundance of information related to HIV pathogenesis and replication.


Assuntos
Bases de Dados de Proteínas , HIV-1/metabolismo , Mapeamento de Interação de Proteínas , Proteínas Virais/metabolismo , Síndrome da Imunodeficiência Adquirida/virologia , Gráficos por Computador , Humanos , Proteínas/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
19.
Nucleic Acids Res ; 37(Database issue): D5-15, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18940862

RESUMO

In addition to maintaining the GenBank nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR, OrfFinder, Spidey, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups (COGs), Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Entrez Probe, GENSAT, Online Mendelian Inheritance in Man (OMIM), Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART) and the PubChem suite of small molecule databases. Augmenting many of the web applications is custom implementation of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.


Assuntos
Bases de Dados Genéticas , Expressão Gênica , Genes , Genômica , Genótipo , National Library of Medicine (U.S.) , Fenótipo , Estrutura Terciária de Proteína , Proteômica , PubMed , Homologia de Sequência , Integração de Sistemas , Estados Unidos
20.
Nucleic Acids Res ; 36(Database issue): D13-21, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18045790

RESUMO

In addition to maintaining the GenBank(R) nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data available through NCBI's web site. NCBI resources include Entrez, the Entrez Programming Utilities, My NCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link, Electronic PCR, OrfFinder, Spidey, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genome, Genome Project and related tools, the Trace, Assembly, and Short Read Archives, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups, Influenza Viral Resources, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus, Entrez Probe, GENSAT, Database of Genotype and Phenotype, Online Mendelian Inheritance in Man, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool and the PubChem suite of small molecule databases. Augmenting the web applications are custom implementations of the BLAST program optimized to search specialized data sets. These resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.


Assuntos
Bases de Dados Genéticas , National Library of Medicine (U.S.) , Animais , Bases de Dados de Ácidos Nucleicos , Expressão Gênica , Genômica , Genótipo , Humanos , Internet , Modelos Moleculares , Fenótipo , Proteômica , Alinhamento de Sequência , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA