Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(29): e202303692, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37132448

RESUMO

A non-canonical biosynthetic pathway furnishing the first natural brexane-type bishomosesquiterpene (chlororaphen, C17 H28 ) was elucidated in the γ-proteobacterium Pseudomonas chlororaphis O6. A combination of genome mining, pathway cloning, in vitro enzyme assays, and NMR spectroscopy revealed a three-step pathway initiated by C10 methylation of farnesyl pyrophosphate (FPP, C15 ) along with cyclization and ring contraction to furnish monocyclic γ-presodorifen pyrophosphate (γ-PSPP, C16 ). Subsequent C-methylation of γ-PSPP by a second C-methyltransferase furnishes the monocyclic α-prechlororaphen pyrophosphate (α-PCPP, C17 ), serving as the substrate for the terpene synthase. The same biosynthetic pathway was characterized in the ß-proteobacterium Variovorax boronicumulans PHE5-4, demonstrating that non-canonical homosesquiterpene biosynthesis is more widespread in the bacterial domain than previously anticipated.


Assuntos
Comamonadaceae , Pseudomonas chlororaphis , Metilação , Difosfatos , Comamonadaceae/genética
2.
Angew Chem Int Ed Engl ; 61(11): e202116614, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35020279

RESUMO

Bacterial multimodular polyketide synthases (PKSs) are large enzymatic assembly lines that synthesize many bioactive natural products of therapeutic relevance. While PKS catalysis is mostly based on fatty acid biosynthetic principles, polyketides can be further diversified by post-PKS enzymes. Here, we characterized a remarkably versatile trans-acyltransferase (trans-AT) PKS from Serratia that builds structurally complex macrolides via more than ten functionally distinct PKS modules. In the oocydin PKS, we identified a new oxygenation module that α-hydroxylates polyketide intermediates, a halogenating module catalyzing backbone γ-chlorination, and modular O-acetylation by a thioesterase-like domain. These results from a single biosynthetic assembly line highlight the expansive biochemical repertoire of trans-AT PKSs and provide diverse modular tools for engineered biosynthesis from a close relative of E. coli.


Assuntos
Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Acilação , Biocatálise , Halogenação , Hidroxilação , Policetídeo Sintases/química , Policetídeos/química , Serratia/enzimologia
3.
J Am Chem Soc ; 140(37): 11855-11862, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30133268

RESUMO

The rhizobacterium Serratia plymuthica 4Rx13 releases a unique polymethylated hydrocarbon (C16H26) with a bicyclo[3.2.1]octadiene skeleton called sodorifen. Sodorifen production depends on a gene cluster carrying a C-methyltransferase and a terpene cyclase along with two enzymes of the 2- C-methyl-d-erythritol 4-phosphate (MEP) pathway of isoprenoid biosynthesis. Comparative analysis of wild-type and mutant volatile organic compound profiles revealed a C-methyltransferase-dependent C16 alcohol called pre-sodorifen, the production of which is upregulated in the terpene cyclase mutant. The monocyclic structure of this putative intermediate in sodorifen biosynthesis was identified by NMR spectroscopy. In vitro assays with the heterologously expressed S. plymuthica C-methyltransferase and terpene cyclase demonstrated that these enzymes act sequentially to convert farnesyl pyrophosphate (FPP) into sodorifen via a pre-sodorifen pyrophosphate intermediate, indicating that the S-adenosyl methionine (SAM)-dependent C-methyltransferase from S. plymuthica exhibits unprecedented cyclase activity. In vivo incorporation experiments with 13C-labeled succinate, l-alanine, and l-methionine confirmed a MEP pathway to FPP via the canonical glyceraldehyde-3-phosphate and pyruvate, as well as its SAM-dependent methylation in pre-sodorifen and sodorifen biosynthesis. 13C{1H} NMR spectroscopy facilitated the localization of 13C labels and provided detailed insights into the biosynthetic pathway from FPP via pre-sodorifen pyrophosphate to sodorifen.


Assuntos
Compostos Bicíclicos com Pontes/metabolismo , Eritritol/análogos & derivados , Metiltransferases/metabolismo , Octanos/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , S-Adenosilmetionina/metabolismo , Serratia/metabolismo , Sesquiterpenos/metabolismo , Fosfatos Açúcares/metabolismo , Compostos Bicíclicos com Pontes/química , Ciclização , Eritritol/química , Eritritol/metabolismo , Metilação , Estrutura Molecular , Octanos/química , Fosfatos de Poli-Isoprenil/química , S-Adenosilmetionina/química , Serratia/enzimologia , Sesquiterpenos/química , Fosfatos Açúcares/química
4.
Angew Chem Int Ed Engl ; 57(36): 11644-11648, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29898240

RESUMO

Enzymatic core components from trans-acyltransferase polyketide synthases (trans-AT PKSs) catalyze exceptionally diverse biosynthetic transformations to generate structurally complex bioactive compounds. Here we focus on a group of oxygenases identified in various trans-AT PKS pathways, including those for pederin, oocydins, and toblerols. Using the oocydin pathway homologue (OocK) from Serratia plymuthica 4Rx13 and N-acetylcysteamine (SNAC) thioesters as test surrogates for acyl carrier protein (ACP)-tethered intermediates, we show that the enzyme inserts oxygen into ß-ketoacyl moieties to yield malonyl ester SNAC products. Based on these data and the identification of a non-hydrolyzed oocydin congener with retained ester moiety, we propose a unified biosynthetic pathway of oocydins, haterumalides, and biselides. By providing access to internal ester, carboxylate pseudostarter, and terminal hydroxyl functions, oxygen insertion into polyketide backbones greatly expands the biosynthetic scope of PKSs.


Assuntos
Proteínas de Bactérias/metabolismo , Oxigênio/metabolismo , Oxigenases/metabolismo , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Serratia/metabolismo , Vias Biossintéticas , Serratia/enzimologia , Especificidade por Substrato
5.
Science ; 383(6689): 1312-1317, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38513027

RESUMO

Bacterial multimodular polyketide synthases (PKSs) are giant enzymes that generate a wide range of therapeutically important but synthetically challenging natural products. Diversification of polyketide structures can be achieved by engineering these enzymes. However, notwithstanding successes made with textbook cis-acyltransferase (cis-AT) PKSs, tailoring such large assembly lines remains challenging. Unlike textbook PKSs, trans-AT PKSs feature an extraordinary diversity of PKS modules and commonly evolve to form hybrid PKSs. In this study, we analyzed amino acid coevolution to identify a common module site that yields functional PKSs. We used this site to insert and delete diverse PKS parts and create 22 engineered trans-AT PKSs from various pathways and in two bacterial producers. The high success rates of our engineering approach highlight the broader applicability to generate complex designer polyketides.


Assuntos
Aciltransferases , Proteínas de Bactérias , Evolução Molecular Direcionada , Policetídeo Sintases , Policetídeos , Proteínas Recombinantes de Fusão , Aciltransferases/genética , Aciltransferases/química , Policetídeo Sintases/química , Policetídeo Sintases/genética , Policetídeos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Serratia , Motivos de Aminoácidos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
6.
FEMS Microbiol Rev ; 45(6)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33864462

RESUMO

The 'biogenetic isoprene rule', formulated in the mid 20th century, predicted that terpenoids are biosynthesized via polymerization of C5 isoprene units. The polymerizing enzymes have been identified to be isoprenyl diphosphate synthases, products of which are catalyzed by terpene synthases (TPSs) to achieve vast structural diversity of terpene skeletons. Irregular terpenes (e.g, C11, C12, C16 and C17) are also frequently observed, and they have presumed to be synthesized by the modification of terpene skeletons. This review highlights the exciting discovery of an additional route to the biosynthesis of irregular terpenes which involves the action of a newly discovered enzyme family of isoprenyl diphosphate methyltransferases (IDMTs). These enzymes methylate, and sometimes cyclize, the classical isoprenyl diphosphate substrates to produce modified, non-canonical substrates for specifically evolved TPSs. So far, this new pathway has been found only in bacteria. Structure and sequence comparisons of the IDMTs strongly indicate a conservation of their active pockets and overall topologies. Some bacterial IDMTs and TPSs appear in small gene clusters, which may facilitate future mining of bacterial genomes for identification of irregular terpene-producing enzymes. The IDMT-TPS route for terpenoid biosynthesis presents another example of nature's ingenuity in creating chemical diversity, particularly terpenoids, for organismal fitness.


Assuntos
Metiltransferases , Terpenos , Bactérias/genética , Metiltransferases/genética , Família Multigênica
7.
Front Microbiol ; 8: 2522, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312220

RESUMO

Microorganisms are capable of synthesizing a plethora of secondary metabolites including the long-overlooked volatile organic compounds. Little knowledge has been accumulated regarding the regulation of the biosynthesis of such mVOCs. The emission of the unique compound sodorifen of Serratia plymuthica isolates was significantly reduced in minimal medium with glucose, while succinate elevated sodorifen release. The hypothesis of carbon catabolite repression (CCR) acting as a major control entity on the synthesis of mVOCs was proven by genetic evidence. Central components of the typical CCR of Gram-negative bacteria such as the adenylate cyclase (CYA), the cAMP binding receptor protein (CRP), and the catabolite responsive element (CRE) were removed by insertional mutagenesis. CYA, CRP, CRE1 mutants revealed a lower sodorifen release. Moreover, the emission potential of other S. plymuthica isolates was also evaluated.

8.
FEMS Microbiol Lett ; 363(14)2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27231241

RESUMO

The rhizobacterium Serratia plymuthica 4Rx13 emits the novel and unique volatile sodorifen (C16H26), which has a polymethylated bicyclic structure. Transcriptome analysis revealed that gene SOD_c20750 (annotated as terpene cyclase) is involved in the biosynthesis of sodorifen. Here we show that this gene is located in a small cluster of four genes (SOD_c20750 - SOD_c20780), and the analysis of the knockout mutants demonstrated that SOD_c20760 (annotated as methyltransferase) and SOD_c20780 (annotated as isopentenyl pyrophosphate (IPP) isomerase) are needed for the biosynthesis of sodorifen, while a sodorifen-negative phenotype was not achieved with the SOD_c20770 (annotated as deoxy-xylulose-5-phosphate (DOXP) synthase) mutant. Altogether, the function of this new gene cluster was assigned to the biosynthesis of this structurally unusual volatile compound sodorifen.


Assuntos
Compostos Bicíclicos com Pontes/metabolismo , Genes Bacterianos , Família Multigênica , Octanos/metabolismo , Serratia/genética , Serratia/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Ordem dos Genes , Genoma Bacteriano , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA