Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; : e202401698, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899378

RESUMO

An air-stable, inexpensive, and isolable cobalt(II) complex (C1) of N-((1-methyl-1H-imidazol-2-yl)methyl)-2-(phenylselanyl)ethan amine (L1) was synthesized and characterized. The complex was used to catalyze a one-pot cascade reaction between 2-(2-aminophenyl)ethanols and benzyl alcohol derivatives. Interestingly, 2-aryl-3-formylindole derivatives were formed instead of N-alkylated or C-3 alkylated indoles. A broad substrate scope can be activated using this protocol with only 5.0 mol% catalyst loading to achieve up to 87% yield of 2-aryl-3-formylindole derivatives. The mechanistic studies suggested that the reaction proceeds through tandem imine formation followed by cyclization.

2.
Chem Asian J ; 19(4): e202300935, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38116906

RESUMO

Herein, we have reported the synthesis of a macrocyclic organosulfur ligand (L1) having a seventeen-membered macrocyclic ring. Subsequently, the corresponding trans-palladium complex (C1) of bulky macrocyclic organosulfur ligand (L1) was synthesized by reacting it with PdCl2 (CH3 CN)2 salt. The newly synthesized ligand and complex were characterized using various analytical and spectroscopic techniques. The complex showed a square planar geometry with trans orientation of two ligands around the palladium center. The complex possesses intramolecular SCH…Cl interactions of 2.648 Šbetween the macrocyclic ligand and palladium dichloride. The potential energy surface (PES) for the rotational process of C1 suggested a barrier of ~23.81 kcal/mol for chlorine rotation. Furthermore, the bulky macrocyclic organosulfur ligand stabilized palladium complex (C1) was used as a catalyst (2.5 mol %) for α-olefination of nitriles by primary alcohols. The α,ß-unsaturated nitrile compounds were found to be the major product of the reaction (57-78 % yield) with broad substrate scope and large functional group tolerance. Notably, the saturated nitrile product was not observed during the reaction. The mechanistic studies suggested the formation of H2 and H2 O as only by-products of the reaction, thereby making the protocol greener and sustainable.

3.
Dalton Trans ; 52(16): 5110-5118, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36960760

RESUMO

This report describes the synthesis of a seventeen-membered macrocyclic ring containing ligand (L1) by the reaction of 1,8-bis(2-(chloromethyl)phenoxy)octane with selenium powder. The trans-palladium dichloride complex (C1) of the macrocyclic selenium ligand was synthesized from its reaction with the Pd(CH3CN)2Cl2 precursor. The formation of the ligand and complex was authenticated with the help of various analytical techniques like 1H and 13C{1H} NMR, HRMS, FTIR, UV-visible spectroscopy, and elemental analysis. The structure of the ligand and its coordination mode with the palladium precursor were authenticated with the help of single crystal X-ray diffraction. The complex possesses a distorted square planar geometry around the palladium center. The new ligand and complex are air and moisture insensitive and stable at room temperature for over three months. The variable temperature NMR data and computational studies suggest selenium inversion in the palladium complex (C1) with an inversion barrier of ∼22.6 kcal mol-1. The palladium complex C1 was used as a catalyst for the dehydroxymethylation of long alkyl chain containing dihydroxy compounds. Generally, two separate catalysts are used for dehydroxymethylation (one for the oxidation of the alcohol and the other for the decarbonylation of the aldehyde). Here a single catalyst shows the dual action of dehydroxymethylation with up to 91% yield under only 5.0 mol% catalyst loading. A broad substrate scope can be achieved with good functional group tolerance. The PPh3 and Hg poisoning tests suggest the homogeneous nature of the reaction. Interestingly, the same long alkyl chain containing dihydroxy compounds were reported to undergo macrolactonization when reacted with a ruthenium catalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA