Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 236(Pt 1): 116782, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517497

RESUMO

Sulfide-containing wastewater, characterized by its foul odor, corrosiveness, and toxicity, can endanger human health. Fluidized-bed homogeneous crystallization (FBHC) avoids the excessive sludge production commonly associated with conventional chemical precipitation methods. In this study, FBHC is used to treat sulfur-containing synthetic wastewater. Furthermore, nickel-containing wastewater was utilized as a precipitant in the system, hence the advantage of simultaneous sulfur and nickel removal from the wastewater. The operating parameters, including pH, a precipitant dosage of [Ni2+]0/[S2-]0, and cross-sectional surface loading (LS, kg/m2h) are optimized. The optimum operating conditions of pH 9.8 ± 0.3, [Ni2+]0/[S2-]0 = 0.8, and LS = 1.5 kg/m2h results in total sulfur removal (TR) of 95.7% and crystallization ratio (CR) of 94.8%. The effect of organic compounds (acetic acid, oxalic acid, EDTA, and citric acid) and inorganic ions (NO3-, CO32-, PO43-, F-, and Cl-) on the nickel sulfide granulation process was discussed.

2.
Chemosphere ; 357: 142008, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614398

RESUMO

The mixture of copper and iron often results in materials with favorable properties. The material production processes involving these metals including electroplating produce hazardous wastewater. In this study, the Fluidized Bed Homogeneous Crystallization (FBHC) process was applied to treat iron and copper-containing wastewater. The initial iron copper particles were successfully recovered from synthetic wastewater with [Fe]0:[Cu]0 of 2:1, the total metal concentration of 3 mM, at effluent pH = 7.75 ± 0.75, with the upflow velocity (U) of 1.76 m/h. The agglomerates hardening process is a crucial step for initial particle synthesis. The SEM analysis reveals the spherical particle's densified crust and porous core. The particle formation mechanism which includes the formation of the nucleus, attachment of precipitate flakes, and densification of particles was proposed after microscopic observation. The initial particles synthesized were used to initiate the treatment of synthetic wastewater at the operating condition pH = 7.75 ± 0.5, [Fe]0:[Cu]0 of 2:1, the total metal concentration of 3 mM, [CO32-]0:[M]0 = 1.2:1, and U of 28.66 m/h which results in the total metal removal of 99% and crystallization ratio of 90% and 88% for iron and copper respectively. The conditions were then applied to treat electroplating wastewater and resulted in the total metal removal of 99% for both iron and copper and a crystallization ratio of 83% and 79% for iron and copper, respectively. The treatment provided advantages in terms of treating larger amounts of sludge while eliminating the need to provide seed thus yielding a higher purity of product.


Assuntos
Cobre , Cristalização , Ferro , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Cobre/química , Cobre/isolamento & purificação , Ferro/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos/métodos
3.
Chemosphere ; 343: 140268, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37758073

RESUMO

This study aims to explore the reusability of wastewater treatment by-product for photo-Fenton process to treat an organic pollutant model. The optimal condition, reactive oxygen species (ROS), and kinetic approach in photo-Fenton process was discussed. The Metal oxide crystal pellets from are a by-product of the Fluidized-Bed Crystallization (FBC) process and can be used as a catalyst in the Photo-Fenton process. Electroplating wastewater containing iron and copper was treated via the FBC process using granulated Al(OH)3 as carrier seeds. The binary oxide of FeOOH and Cu2O on the Al(OH)3 surface (Fe0.66Cu0.33@Al(OH)3) was identified as the FBC by-product after characterization using FTIR and XPS analysis. In the photo-Fenton process, visible light from a fluorescence lamp with a wavelength of 400-610 nm was chosen as an irradiation source. Oxalic acid was added as chelating agent to form photosensitive iron oxalate species and hydrogen peroxide was applied as oxidant to generate active radical to decolorize and mineralize RB5 synthesized solution (100 mg/L). The operating conditions including the oxalic acid to pollutant ratio ([OA]0/[RB5]0) of 4.5-13.0, reaction pH (pHr) of 3-7 and initial to theoretical hydrogen peroxide molar ratio [H2O2]0/[ H2O2]theoretical of 35%-120% were optimized. Under the optimal conditions, pHr = 5.0; [H2O2]0/[RB5]0 at 75% stoichiometric and [OA]0/[RB5]0 = 9, the RB5 is almost completely decolorized after 210 min of operation and the mineralization efficiency is 58%. The contribution of •OH, O2•-, and O21 to the Photo-Fenton system was determined using ESR analysis with the addition of DMPO and TEMP as spin trap agents. The kinetic analysis reveals the observed rate constants kRB5, kOA and kR from fitting are 0.0120, 0.0054 and 0.0001 M-1s-1, respectively.


Assuntos
Poluentes Ambientais , Peróxido de Hidrogênio , Peróxido de Hidrogênio/química , Cobre , Compostos Azo , Cinética , Luz , Óxidos/química , Ácido Oxálico , Oxirredução
4.
Chemosphere ; 296: 133663, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35063559

RESUMO

The strong oxidant, persulfate (PS, S2O82-), was applied to treat the synthetic wastewater of benzoic acid (BA) under UV irradiation. UVC light initiated a chain reaction that derived the sulfate radical (SO4•-) and hydroxyl radical (HO•) from S2O82- ion. The experiment parameters, including light irradiation (UVA and UVC), pH, dose ratio ([PS]0/[BA]0), initial concentration ([BA]0, mg/L), was optimized based on degradation efficiency and total organic carbon (TOC) removal of BA, which reached up to 100% and 96%, respectively, under pH 3.0. The best dose ratio was close to equivalent stoichiometry (and [PS]0/[BA]0 = 15) for the treatment of 100 mg-BA/L, suggesting that UV/S2O82- was able to completely convert BA to carbon dioxide and water. The scavenging test showed that SO4•- contributed to about 60% of degradation rate, which the HO• predominated the mineralization rate, i.e., TOC removal. A consecutive kinetic model was proposed to clarify the reaction sequence and rate-determining factor of photo-persulfate oxidation for benzoic acid.


Assuntos
Ácido Benzoico , Poluentes Químicos da Água , Peróxido de Hidrogênio , Cinética , Oxirredução , Sulfatos , Raios Ultravioleta , Poluentes Químicos da Água/análise
5.
J Hazard Mater ; 407: 124401, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33280939

RESUMO

The anthropogenic emission of boron to river has become a serious problem that deteriorates the water quality and endangers the ecosystem. Although boron is a micronutrient, it is toxic to plants, animals and humans upon exposure. In this review, we first present the sources of the boron-containing streams and their composition, and then summarize the recent progress of boron removal methods based on adsorption and coagulation systematically. The boron-spiked streams are produced from coal-fired and geothermal power plants, the manufacturing and the activities of oil/gas excavation and mining. The adsorbents for boron removal are classified into the ones functionalized by chelating groups, the ones on the basis of clays or metal oxide. Three subgroups reside in the coagulation approach: electrocoagulation, chemical precipitation and chemical oxo-precipitation. The hybrid technology that combines membrane process and adsorption/coagulation was covered as well. To provide a comprehensive view of each method, we addressed the reaction mechanism, specified the strength and weakness and summarized the progress in the past 5 years. Ultimately, the prospective for future research and the possible improvement on applicability and recyclability were proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA