Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Environ Res ; 215(Pt 1): 114224, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36058276

RESUMO

Microplastics are a silent threat that represent a high degree of danger to the environment in its different ecosystems and of course will also have an important impact on the health of living organisms. It is evident the need to have effective treatments for their treatment, however this is not a simple task, this as a result of the behavior of microplastics in wastewater treatment plants due to their different types and nature, their long molecular chain, reactivity against water, size, shape and the functional groups they carry. Wastewater treatment plants are at the circumference of the release of these wastes into the environment. They often act as a source of many contaminations, which makes this problem more complex. Challenges such as detection in the current scenario using the latest analytical techniques impede the correct understanding of the problem. Due to microplastics, treatment plants have operational and process stability problems. This review paper will present the in-depth situation of occurrence of microplastics, their detection, conventional and advanced treatment methods as well as implementation of legislations worldwide in a comprehensive manner. It has been observed that no innovative or new technologies have emerged to treat microplastics. Therefore, in this article, technologies targeting wastewater treatment plants are critically analyzed. This will help to understand their fate, but also to develop state-of-the-art technologies or combinations of them for the selective treatment of microplastics. The pros and cons of the treatment methods adopted and the knowledge gaps in legislation regarding their implementation are also comprehensively analyzed. This critical work will offer the development of new strategies to restrict microplastics.


Assuntos
Microplásticos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental/métodos , Microplásticos/toxicidade , Plásticos , Águas Residuárias/análise , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
2.
J Environ Manage ; 301: 113769, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34600426

RESUMO

Forests have been undergoing through immense pressure due to the factors like human activities; procurement of forest products and climate change which is a major factor influencing this pressure buildup on forests. Climate change and temperature increase caused by anthropogenic activities have notably affected forests and wildlife on a global scale. High temperature increases the soil-water evaporation, resulting in drier soils, and water loss in forest flora. The incidence of forest fires has doubled since 1984 and these are linked to global warming. Drought influences fuel moisture by bringing about physiological changes in forest vegetation leading to forest fires. Forest resilience is hampered because of temperature and drought stress at the developing stage of plant's life cycle leading to the shift in plant species in those areas. Forest fire incidences can be managed with proper management strategies such as sustainable, community and urban forest management. A careful monitoring of stress precursors, subsistence uses of forests, ecological education and planting of near native and new indigenous plant species are the tools that can aid in efficient forest management.


Assuntos
Incêndios , Incêndios Florestais , Mudança Climática , Secas , Florestas , Humanos , Árvores
3.
Environ Chem Lett ; 20(2): 1275-1294, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35069060

RESUMO

The outbreak of the human coronavirus disease 2019 (COVID-19) has induced an unprecedented increase in the use of several old and repurposed therapeutic drugs such as veterinary medicines, e.g. ivermectin, nonsteroidal anti-inflammatory drugs, protein and peptide therapeutics, disease-modifying anti-rheumatic drugs and antimalarial drugs, antiretrovirals, analgesics, and supporting agents, e.g. azithromycin and corticosteroids. Excretion of drugs and their metabolites in stools and urine release these drugs into wastewater, and ultimately into surface waters and groundwater systems. Here, we review the sources, behaviour, environmental fate, risks, and remediation of those drugs. We discuss drug transformation in aquatic environments and in wastewater treatment systems. Degradation mechanisms and metabolite toxicity are poorly known. Potential risks include endocrine disruption, acute and chronic toxicity, disruption of ecosystem functions and trophic interactions in aquatic organisms, and the emergence of antimicrobial resistance.

4.
Environ Dev Sustain ; : 1-32, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35645606

RESUMO

The availability of freshwater is limited for agriculture systems across the globe. A fast-growing population demands need to enhance the food grain production from a limited natural resources. Therefore, researchers and policymakers have been emphasized on the production potential of agricultural crops in a sustainable manner. On the challenging side, freshwater bodies are shrinking with the pace of time further limiting crop production. Poor-quality water may be a good alternative for fresh water in water scarce areas. It should not contain toxic pollutants beyond certain critical levels. Unfortunately, such critical limits for different pollutants as well as permissible quality parameters for different wastewater types are lacking or poorly addressed. Marginal quality water and industrial effluent used in crop production should be treated prior to application in crop field. Hence, safe reuse of wastewater for cultivation of food material is necessary to fulfil the demands of growing population across the globe in the changing scenario of climate.

5.
Environ Chem Lett ; 19(4): 2773-2787, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33846683

RESUMO

End 2019, the zoonotic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), named COVID-19 for coronavirus disease 2019, is the third adaptation of a contagious virus following the severe acute respiratory syndrome coronavirus in 2002, SARS-CoV, and the Middle East respiratory syndrome virus in 2012, MERS-CoV. COVID-19 is highly infectious and virulent compared to previous outbreaks. We review sources, contagious routes, preventive measures, pandemic, outbreak, epidemiology of SARS-CoV, MERS-CoV and SARS-CoV-2 from 2002 to 2020 using a Medline search. We discuss the chronology of the three coronaviruses, the vulnerability of healthcare workers, coronaviruses on surface and in wastewater, diagnostics and cures, and measures to prevent spreading.

6.
J Environ Manage ; 270: 110911, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32721345

RESUMO

The adsorption-desorption behavior of methylene blue, acid orange 7, bisphenol A, and phenol on the synthesized graphene-based nanomaterials were studied. For this purpose, adsorption experiments were conducted in a batch setup and different parameters such as contact time, pH, adsorbent dose concentration, and initial micropollutant concentration were considered. In addition, linear and nonlinear kinetic and isotherm models were evaluated. The nonlinear pseudo-second-order models (R2 > 0.98), Elovich kinetic models (R2 > 0.94), and Langmuir isotherm models (R2 > 0.98) best fitted the experimental data. Because of the high specific surface area and the type of oxygen functional groups, mechanochemically synthesized graphite oxide exhibited high adsorption capacities for methylene blue, acid orange 7, bisphenol A, and phenol, with a maximum uptake of 288, 232, 110, and 68 mg g-1, respectively. Furthermore, the total costs of applying the mechanochemically synthesized graphite oxide were estimated in the adsorption process, revealing that these nanomaterials offer better uptake values than porous carbon.


Assuntos
Poluentes Ambientais , Grafite , Nanoestruturas , Poluentes Químicos da Água/análise , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Azul de Metileno , Modelos Teóricos
7.
Int J Phytoremediation ; 18(6): 619-25, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26375406

RESUMO

In this research, dead leaves of a common ornamental plant, Dracaena draca known also as dragon tree was used as a biosorbent for the removal of Cadmium (Cd(2+)) from aqueous solutions using a full 2(3) factorial experimental design. Three factors were investigated at two different levels, metal ion concentration (X = 10 and 100 ppm), hydrogen ion concentration (Ph = 2 and 7) and biomass dose (BD = 0.1 and 0.5g). Experiments were carried out in duplicates with 50 ml of Cd(2+) solutions at room temperature. When comparing observed values (experimental) with calculated values (model), they were set closely together that allowed suggesting a normal distribution where (R(2) = 0.9938). A characterization of the biosorbent was done by pHzpc and SEM-EDAX. Results also showed that the most significant effect for Cd(2+) biosorption was ascribed to (X). The interaction effects of (pH BD) and (X pH) were found to have significant influence on Cd(2+) removal efficiency. The highest Cd(2+) removal percentage attained by 79.60% at X = 10 ppm, pH = 7 and BD = 0.5g. The reusability of the biosorbent was tested in three desorption cycles and the regeneration efficiency was above 99.7%.


Assuntos
Cádmio/química , Dracaena/química , Recuperação e Remediação Ambiental/métodos , Folhas de Planta/química , Poluentes Químicos da Água/química , Adsorção , Biodegradação Ambiental , Cádmio/metabolismo , Dracaena/metabolismo , Recuperação e Remediação Ambiental/instrumentação , Folhas de Planta/metabolismo , Poluentes Químicos da Água/metabolismo
8.
Chemosphere ; 355: 141746, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522673

RESUMO

Hydrothermal carbonization was applied to taro peel wastes to produce hydrochars using a facile and environmentally friendly process. Four different entities were prepared: hydrochar (TPh), phosphoric-activated hydrochar (P-TPh), and silver@hydrochars (Ag@TPh, Ag@P-TPh). The elemental compositions of the single and composite hydrochars were confirmed by EDX. Among the produced hydrochars, the morphology of the Ag@hydrochar composites demonstrated more wrinkled structure, and Ag nanoparticles decorated the surface. The optimal experimental conditions for levofloxacin adsorption were determined to be a contact time of 45 min, hydrochar dose of 0.15 g L-1, and pH of 7. The best adsorption performances were assigned to Ag@hydrochars. Two machine learning models were applied to predict the levofloxacin adsorption efficiency of the Ag@hydrochars. A central composite design (CCD) and a 3-10-1 artificial neural network (ANN) model were developed to estimate the removal performance of levofloxacin using Levenberg-Marquardt backpropagation algorithm based on correlation and error analysis of the adopted training functions. Furthermore, the ANN sensitivity analysis revealed the order of the relative importance variable as initial concentration> hydrochar dose> pH. The predicted values of the CCD and ANN models fitted the experimental results with R2> 0.989. Therefore, the applied models were effective in predicting levofloxacin removal under different operating conditions. This work provides an open option for the sustainable management of food industry wastes and the possibility of waste valorization to effective hydrochar composites to be applied in water treatment processes.


Assuntos
Levofloxacino , Nanopartículas Metálicas , Adsorção , Prata , Redes Neurais de Computação , Carbono
9.
Sci Rep ; 14(1): 13459, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38862646

RESUMO

Although, different plant species were utilized for the fabrication of polymorphic, hexagonal, spherical, and nanoflower ZnO NPs with various diameters, few studies succeeded in synthesizing small diameter ZnO nanorods from plant extract at ambient temperature. This work sought to pioneer the ZnO NPs fabrication from the aqueous extract of a Mediterranean salt marsh plant species Limoniastrum monopetalum (L.) Boiss. and assess the role of temperature in the fabrication process. Various techniques have been used to evaluate the quality and physicochemical characteristics of ZnO NPs. Ultraviolet-visible spectroscopy (UV-VIS) was used as the primary test for formation confirmation. TEM analysis confirmed the formation of two different shapes of ZnO NPs, nano-rods and near hexagonal NPs at varying reaction temperatures. The nano-rods were about 25.3 and 297.9 nm in diameter and in length, respectively while hexagonal NPs were about 29.3 nm. The UV-VIS absorption spectra of the two forms of ZnO NPs produced were 370 and 365 nm for nano-rods and hexagonal NPs, respectively. FT-IR analysis showed Zn-O stretching at 642 cm-1 and XRD confirmed the crystalline structure of the produced ZnO NPs. Thermogravimetric analysis; TGA was also used to confirm the thermal stability of ZnO NPs. The anti-tumor activities of the two prepared ZnO NPs forms were investigated by the MTT assay, which revealed an effective dose-dependent cytotoxic effect on A-431 cell lines. Both forms displayed considerable antioxidant potential, particularly the rod-shaped ZnO NPs, with an IC50 of 148.43 µg mL-1. The rod-shaped ZnO NPs were superior candidates for destroying skin cancer, with IC50 of 93.88 ± 1 µg mL-1 ZnO NPs. Thus, rod-shaped ZnO NPs are promising, highly biocompatible candidate for biological and biomedical applications. Furthermore, both shapes of phyto-synthesized NPs demonstrated effective antimicrobial activity against various pathogens. The outcomes highlight the potential of phyto-synthesized ZnO NPs as an eco-friendly alternative for water and wastewater disinfection.


Assuntos
Nanopartículas Metálicas , Extratos Vegetais , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Nanopartículas Metálicas/química , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Química Verde/métodos , Linhagem Celular Tumoral , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Membranes (Basel) ; 13(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37755211

RESUMO

Water shortages are one of the problems caused by global industrialization, with most wastewater discharged without proper treatment, leading to contamination and limited clean water supply. Therefore, it is important to identify alternative water sources because many concerns are directed toward sustainable water treatment processes. Nanofiltration membrane technology is a membrane integrated with nanoscale particle size and is a superior technique for heavy metal removal in the treatment of polluted water. The fabrication of nanofiltration membranes involves phase inversion and interfacial polymerization. This review provides a comprehensive outline of how nanoparticles can effectively enhance the fabrication, separation potential, and efficiency of NF membranes. Nanoparticles take the form of nanofillers, nanoembedded membranes, and nanocomposites to give multiple approaches to the enhancement of the NF membrane's performance. This could significantly improve selectivity, fouling resistance, water flux, porosity, roughness, and rejection. Nanofillers can form nanoembedded membranes and thin films through various processes such as in situ polymerization, layer-by-layer assembly, blending, coating, and embedding. We discussed the operational conditions, such as pH, temperature, concentration of the feed solution, and pressure. The mitigation strategies for fouling resistance are also highlighted. Recent developments in commercial nanofiltration membranes have also been highlighted.

11.
Artigo em Inglês | MEDLINE | ID: mdl-37126180

RESUMO

In this work, cotton stalks (Gossypium barbadense) and date palm stones (Phoenix dactylifera) have been used as biosorbents to remove cadmium; Cd(II), lead; Pb(II), and zinc; Zn(II) from mono- and multi-solutions. Each biosorbent was characterized using SEM-EDX, and FT-IR. The findings showed that pH, dose, contact time, metal concentration, and particle size affect the treatment process. The adsorption pattern was Pb(II) > Cd(II) > Zn(II) for both biosorbents. The adsorption performance of cotton stalks was higher than that of date palm stones. The fitted maximum uptake capacities; qm of cotton stalks were higher than those of date palm stones. The maximum adsorption at optimum conditions of Pb(II), Cd(II), and Zn(II) with cotton stalks were 98%, 92.1%, and 78.9%, respectively, within 30 min. While the maximum adsorption of Pb(II), Cd(II), and Zn(II) with date palm stones were 94.6%, 76%, and 68.6%, respectively. Results confirmed the antagonistic effect of heavy metal removal at optimum conditions. Biosorbents could remove ~ 100% of the metal ions from real wastewater samples. Regeneration investigation revealed a successful reusability of both biosorbents for four cycles.

12.
ACS Omega ; 7(49): 45386-45402, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36530337

RESUMO

The increased demand for clean water especially in overpopulated countries is of great concern; thus, the development of eco-friendly and cost-effective techniques and materials that can remediate polluted water for possible reuse in agricultural purposes can offer a life-saving solution to improve human welfare, especially in view of climate change impacts. In the current study, the agricultural byproducts of palm trees have been used for the first time as a carbon source to produce graphene functionalized with ferrocene in a composite form to enhance its water treatment potential. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, X-ray diffraction (XRD), ultraviolet-visible, Fourier transform infrared spectroscopy, zeta potential, thermogravimetric analysis, and Raman techniques have been used to characterize the produced materials. SEM investigations confirmed the formation of multiple sheets of the graphene composite. Data collected from the zeta potential revealed that graphene was supported with a negative surface charge that maintains its stability while XRD elucidated that graphene characteristic peaks were evident at 2θ = 22.4 and 22.08° using palm leaves and fibers, respectively. Batch adsorption experiments were conducted to find out the most suitable conditions to remove PO4 3- from wastewater by applying different parameters, including pH, adsorbent dose, initial concentration, and time. Their effect on the adsorption process was also investigated. Results demonstrated that the best adsorption capacity was 58.93 mg/g (removal percentage: 78.57%) using graphene derived from palm fibers at 15 mg L-1 initial concentration, pH = 3, dose = 10 mg, and 60 min contact time. Both linear and non-linear forms of kinetic and isotherm models were investigated. The adsorption process obeyed the pseudo-second-order kinetic model and was well fitted to the Langmuir isotherm.

13.
Environ Sci Pollut Res Int ; 29(59): 89772-89787, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35859234

RESUMO

In the current work, various concentrations of the aqueous extract of Ziziphus spina-christi were employed for the phytoreduction of graphene oxide (GO). The green synthesized reduced graphene oxide (rGO) was characterized through UV-Vis spectrometry, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy, and energy-dispersive X-ray spectroscopy (SEM-EDX). Gas chromatography-mass spectrometry (GC-MS) denoted the presence of numerous phytoconstituents including ketones, terpenoids, fatty acids, esters, and flavonoids, which acted as reducing and capping agents. The obtained results indicated the increase in rGO yield and shape with increasing the extract concentration. The optimized rGO was instantaneously ~100% removed methylene blue (MB) from the water at 5 mg L-1. However, the removal efficiency was slightly declined to reach 73.55 and 65.1% at 10 and 15 mg L-1, respectively. A powerful antibacterial activity for rGO particularly against gram-negative bacteria with a high concentration of 2 × 108 CFU mL-1 was confirmed. Furthermore, rGO demonstrated promising and comparable antioxidant efficiency with vitamin C against DPPH free radical scavenging. While vitamin C recorded 13.45 and 48.4%, the optimized rGO attained 13.30 and 45.20% at 12 and 50 µg mL-1, respectively.


Assuntos
Grafite , Nanopartículas Metálicas , Ziziphus , Antioxidantes , Espectroscopia de Infravermelho com Transformada de Fourier , Grafite/química , Antibacterianos/farmacologia , Antibacterianos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ácido Ascórbico , Difração de Raios X , Nanopartículas Metálicas/química
14.
Sci Rep ; 12(1): 20370, 2022 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-36437355

RESUMO

In the present study, a green, sustainable, simple and low-cost method was adopted for the synthesis of ZnO NPs, for the first time, using the aqueous extract of sea lavender, Limonium pruinosum (L.) Chaz., as a reducing, capping, and stabilizing agent. The obtained ZnO NPs were characterized using ultraviolet-visible spectroscopy (UV-VIS), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The UV-Vis spectra of the green synthesized ZnO NPs showed a strong absorption peak at about 370 nm. Both electron microscopy and XRD confirmed the hexagonal/cubic crystalline structure of ZnO NPs with an average size ~ 41 nm. It is worth noting that the cytotoxic effect of the ZnO NPs on the investigated cancer cells is dose-dependent. The IC50 of skin cancer was obtained at 409.7 µg/ml ZnO NPs. Also, the phyto-synthesized nanoparticles exhibited potent antibacterial and antifungal activity particularly against Gram negative bacteria Escherichia coli (ATCC 8739) and the pathogenic fungus Candida albicans (ATCC 10221). Furthermore, they showed considerable antioxidant potential. Thus, making them a promising biocompatible candidate for pharmacological and therapeutic applications.


Assuntos
Anti-Infecciosos , Lavandula , Nanopartículas Metálicas , Neoplasias , Plumbaginaceae , Óxido de Zinco , Óxido de Zinco/química , Antioxidantes/farmacologia , Antioxidantes/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Testes de Sensibilidade Microbiana , Nanopartículas Metálicas/química , Folhas de Planta/química , Extratos Vegetais/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/análise , Antibacterianos/química
15.
Sci Rep ; 12(1): 19372, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371519

RESUMO

In this work, the synthesis of an rGO/nZVI composite was achieved for the first time using a simple and green procedure via Atriplex halimus leaves extract as a reducing and stabilizing agent to uphold the green chemistry principles such as less hazardous chemical synthesis. Several tools have been used to confirm the successful synthesis of the composite such as SEM, EDX, XPS, XRD, FTIR, and zeta potential which indicated the successful fabrication of the composite. The novel composite was compared with pristine nZVI for the removal aptitude of a doxycycline antibiotic with different initial concentrations to study the synergistic effect between rGO and nZVI. The adsorptive removal of bare nZVI was 90% using the removal conditions of 25 mg L-1, 25 °C, and 0.05 g, whereas the adsorptive removal of doxycycline by the rGO/nZVI composite reached 94.6% confirming the synergistic effect between nZVI and rGO. The adsorption process followed the pseudo-second order and was well-fitted to Freundlich models with a maximum adsorption capacity of 31.61 mg g-1 at 25 °C and pH 7. A plausible mechanism for the removal of DC was suggested. Besides, the reusability of the rGO/nZVI composite was confirmed by having an efficacy of 60% after six successive cycles of regeneration.


Assuntos
Ferro , Poluentes Químicos da Água , Água , Doxiciclina , Poluentes Químicos da Água/análise , Antibacterianos/farmacologia , Adsorção
16.
Sci Rep ; 11(1): 12547, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131155

RESUMO

Environmentally friendly copper oxide nanoparticles (CuO NPs) were prepared with a green synthesis route without using hazardous chemicals. Hence, the extracts of mint leaves and orange peels were utilized as reducing agents to synthesize CuO NPs-1 and CuO NPs-2, respectively. The synthesized CuO NPs nanoparticles were characterized using scanning electron microscopy (SEM), Energy Dispersive X-ray Analysis (EDX), BET surface area, Ultraviolet-Visible spectroscopy (UV-Vis), and Fourier Transform Infrared Spectroscopy (FT-IR). Various parameters of batch experiments were considered for the removal of Pb(II), Ni(II), and Cd(II) using the CuO NPs such as nanosorbent dose, contact time, pH, and initial metal concentration. The maximum uptake capacity (qm) of both CuO NPs-1 and CuO NPs-2 followed the order of Pb(II) > Ni(II) > Cd(II). The optimum qm of CuO NPs were 88.80, 54.90, and 15.60 mg g-1 for Pb(II), Ni(II), and Cd(II), respectively and occurred at sorbent dose of 0.33 g L-1 and pH of 6. Furthermore, isotherm and kinetic models were applied to fit the experimental data. Freundlich models (R2 > 0.97) and pseudo-second-order model (R2 > 0.96) were fitted well to the experimental data and the equilibrium of metal adsorption occurred within 60 min.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA