Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Public Health ; 12: 1432332, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39286744

RESUMO

Introduction: Several COVID-19 outbreaks have been reported in meat processing plants in different countries. The aim of this study was to assess the environmental and socio-economic risk factors favouring the transmission of SARS-CoV-2 in meat processing plants and to describe the prevention measures implemented. Methods: Data from epidemiological investigations of COVID-19 clusters in France, the scientific literature, structured interviews and site visits were collected and summarised to investigate the main risk factors for SARS-CoV-2 infection in meat processing plants, including determinants within and outside the workplace. Results: An increased risk of infection was identified among workers with unfavourable socio-economic status (temporary/non-permanent workers, migrants, ethnic minorities, etc.), possibly related to community activities (house-sharing, car-sharing, social activities). Working conditions (proximity between workers) and environmental factors (low temperatures and inadequate ventilation) also appear to be important risk factors. These environmental conditions are particularly prevalent in cutting and boning plants, where the majority of reported cases are concentrated. Preventive measures applied included screening for COVID-19 symptoms, testing, wearing masks, increased hygiene and sanitation, physical and temporal distancing, control of ventilation. Certain food safety hygiene measures were compatible with protecting workers from SARS-CoV-2. The hygiene culture of agri-food workers made it easier to implement preventive measures after adaptation. Conclusion: This study made it possible to identify the environmental and socio-economic factors conducive to the transmission of SARS-CoV-2 in meat processing plants. The knowledge gained from this work was used in simulations to understand the transmission of the virus in the plants.


Assuntos
COVID-19 , COVID-19/transmissão , COVID-19/prevenção & controle , COVID-19/epidemiologia , Humanos , França/epidemiologia , Fatores de Risco , SARS-CoV-2 , Indústria de Processamento de Alimentos , Fatores Socioeconômicos , Análise por Conglomerados
2.
Int J Food Microbiol ; 404: 110321, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37499271

RESUMO

At the beginning of the COVID-19 pandemic, several contamination clusters were reported in food-processing plants in France and several countries worldwide. Therefore, a need arose to better understand viral transmission in such occupational environments from multiple perspectives: the protection of workers in hotspots of viral circulation; the prevention of supply disruption due to the closure of plants; and the prevention of cluster expansion due to exports of food products contaminated by the virus to other locations. This paper outlines a simulation-based approach (using agent-based models) to study the effects of measures taken to prevent the contamination of workers, surfaces, and food products. The model includes user-defined parameters to integrate characteristics relating to SARS-CoV-2 (variant of concern to be considered, symptom onset…), food-processing plants (dimensions, ventilation…), and other sociodemographic transmission factors based on laboratory experiments as well as industrial and epidemiological investigations. Simulations were performed for a typical meat-processing plant in different scenarios for illustration purposes. The results suggested that increasing the mask-wearing ratio led to great reductions in the probability of observing clusters of more than 25 infections. In the case of clusters, masks being worn by all workers limited the presence of contamination (defined as levels of at least 5 log10 viral RNA copies) on meat cuts at less than 0.05 % and maintained the production capacity of the plant at optimal levels. Increasing the average distance between two workers from less than 1 m to more than 2 m decreased the cluster-occurrence probability by up to 15 % as well as contamination of food products during cluster situations. The developed approach can open up several perspectives in terms of potential communication-support tools for the agri-food sector and further reuses or adaptations for other hazards and occupational environments.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias/prevenção & controle , Carne , RNA Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA