Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Analyst ; 148(3): 594-608, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36594590

RESUMO

The current study shows that Schiff base HL, (Z)-2,4-dibromo-6-(((piperidin-2-ylmethyl)imino)methyl)phenol, can be used successfully as a selective chemosensor for Zn(II) and Ni(II) among several competing cations in purely aqueous and semi-aqueous media. Under UV light in methanol-water (9 : 1) HEPES buffer, the receptor gives its response by changing its color to cyan color in the presence of Zn(II) and to bluish cyan color in the presence of Ni(II). Surprisingly, the chemosensor can only reliably identify Zn(II) in a hundred percent aqueous medium by changing its color to light yellow. UV and fluorescence studies in both aqueous and semi-aqueous media are used to further investigate this Zn(II) and Ni(II) recognition phenomenon. The high values of the host-guest binding constants, obtained by electronic and fluorescence titration, ensure that a strong bond exists between HL and Ni(II)/Zn(II). As anticipated, two highly luminescent mononuclear, crystalline compounds, complexes 1 and 2, have been developed by a separate reaction of HL and Zn(II)/Ni(II), and the high luminous properties are due to the occurrence of Chelation Enhanced Fluorescence (CHEF). According to the single crystal structure, the asymmetric units of both complexes consist of two deprotonated chemosensor units and one Zn(II)/Ni(II), leading to the formation of an octahedral complex. For Ni(II) and Zn(II) sensing, the predicted LOD is in the nanomolar range. Both complexes 1 and 2 are fluorescence active and studies to check their ATP detection ability, but intriguingly, only complex 2 is capable of detecting ATP in a fully aqueous solution. Finally, the live cell imaging study validates the two sensors' biosensing functionality.

2.
ACS Omega ; 8(1): 636-647, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36643564

RESUMO

A new quercetin-based iron(III) cationic complex [Fe(Qr)Cl(H2O)(MeO)] (complex 1) is created in the current study by condensation of quercetin with ferric chloride in the presence of Et3N. Comprehensive spectroscopic analysis and conductometric measurement are used to pinpoint complex 1. The generated complex's +3-oxidation state has been verified by electron paramagnetic resonance (EPR) research. Density functional theory analysis was used to structurally optimize the structure of complex 1. Before biomedical use, a variety of biophysical studies are implemented to evaluate the binding capacity of complex 1 with DNA and human serum albumin (HSA) protein. The findings of the electronic titration between complex 1 and DNA, as well as the stunning fall in the fluorescence intensities of the HSA and EtBr-DNA/DAPI-DNA domain after complex 1 is gradually added, give us confidence that complex 1 has a strong affinity for both macromolecules. It is interesting to note that the displacement experiment confirms partial intercalation as well as the groove binding mechanism of the title complex with DNA. The time-dependent fluorescence analysis indicates that after interaction with complex 1, HSA will exhibit static quenching. The thermodynamic parameter values in the HSA-complex 1 interaction provide evidence for the hydrophobicity-induced pathway leading to spontaneous protein-complex 1 interaction. The two macromolecules' configurations are verified to be preserved when they are associated with complex 1, and this is done via circular dichroism spectral titration. The molecular docking investigation, which is a theoretical experiment, provides complete support for the experimental findings. The potential of the investigated complex to be an anticancer drug has been examined by employing the MTT assay technique, which is carried out on HeLa cancer cell lines and HEK-293 normal cell lines. The MTT assay results validate the ability of complex 1 to display significant anticancer properties. Finally, by using the AO/PI staining approach, the apoptotic-induced cell-killing mechanism as well as the detection of cell morphological changes has been confirmed.

3.
RSC Adv ; 13(11): 7632-7644, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36908538

RESUMO

This present study delineates the syntheses, detailed characterization and anti-proliferative potential against SiHa (cervical cancer cell) of two mononuclear complexes of Cu(ii) and Ni(ii) using a Schiff base ligand (L) derived from 2-hydroxybenzaldehyde and N-methyl-propane 1,3-diamine. The crystallographic results show the centro-symmetric space group of orthorhombic nature (Pccn) for Cu(ii) complex (1) where the central Cu(ii) has an inversion center symmetry with six co-ordinations resulting in a distorted octahedral geometry. Whereas, in complex (2), the two independent Ni(ii) atoms present in the special position within version symmetry and form a distorted geometry of octahedral nature with six coordinations. Absorption spectral titrations with Calf Thymus (CT) DNA and the extent of the decrease in relative emission intensities of DNA-bound ethidium bromide (EB) upon adding the complexes reveal the parallel trend in DNA binding affinities for both the complexes but with a small extent of binding capabilities. Bovine serum albumin (BSA) interaction studies demonstrate that complex 1 exhibits more promiscuous binding with BSA as compared to complex 2 from the spectroscopic and theoretical approaches. α,α-Diphenyl-ß-picrylhydrazyl (DPPH) free radical scavenging method shows a little antioxidant or free radical scavenging activity for both the studied complexes. Cytotoxicity studies against SiHa expressed that the percentage of cell viability was reduced with time whereas in the same concentration and conditions, the viability percentage was higher for 3T3-L1 (several normal cell lines of mouse). The fluorescence imaging obtained from acridine orange (AO) and ethidium bromide (EtBr) demonstrates that the colour of the cancer cells has changed gradually dictating the cell apoptosis from day 1 to day 3.

4.
ACS Appl Bio Mater ; 6(11): 4836-4845, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37935574

RESUMO

In an initiation to investigate a prospective bioactive compound, a mononuclear Ni(II) complex with N, N, and O donor Schiff base ligand was synthesized and characterized in the present study through FTIR, ESI-mass, and X-ray crystallographic diffraction studies. A slightly distorted octahedral geometry has been obtained for the Ni(II) complex from X-ray crystallographic diffraction studies. In vitro comprehensive biological studies show the antifungal specific efficiency of the complex against Colletotrichum siamense (AP1) and Fusarium equisetum (F.E.) pathogens, which are responsible for anthracnose and wilt disease, respectively, but no inhibitory effect on both Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration (MIC) for these pathogens was observed to be 0.25 and 0.5 mM, respectively. The experiment also reveals that significant damage of mycelia and enlarged, misshaped damaged spores are noticed in comparison to hexaconazole, used as a positive control under a light microscope post 48 h treatment of AP1 and F.E. with the MIC of the complex. The binding interaction studies of the complex with DNA and BSA performed through a variety of spectroscopic techniques demonstrate a strong binding behavior of the complex for both the binding systems. The observed negative ΔH° and ΔS° values for DNA reveal the existence of hydrogen-bonding/van der Waals interactions for DNA which was also exemplified from the molecular docking and self-assembly studies of the complex. The positive ΔH° and ΔS° values for BSA demonstrate the hydrophobic interactions of the complex with BSA. However, cytotoxicity studies against the MDA-MB-231 breast cancer cell line did not demonstrate any significant potentiality of the complex as an anticancer agent. All the bio-experimental studies provide clear evidence that the synthesized Ni(II) complex exhibits potential antifungal activity and could be used as a therapeutic fungicide agent in comparison to hexaconazole in agricultural practices.


Assuntos
Equisetum , Fusarium , Antifúngicos/farmacologia , Antibacterianos , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Simulação de Acoplamento Molecular , Estudos Prospectivos , DNA
5.
Heliyon ; 9(12): e22712, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125469

RESUMO

In the current study, one new quercetin-based Zn(II) complex [Zn(Qr)(CNNCN)(H2O)2] (Complex 1) which is developed by condensation of quercetin with ZnCl2 in the presence of NaN(CN)2 and Cu(II) complex [Cu(Qr)N3(CH3OH)(H2O)] (complex 2) which is developed by the condensation reaction of quercetin and CuCl2 in presence of NaN3, are thoroughly examined in relation to their use in biomedicine. The results of several spectroscopic studied confirm the structure of both the complexes and the Density Functional Theory (DFT) study helps to optimize the structure of complex 1 and 2. After completion of the identification process, DNA and Human Serum Albumin (HSA) binding efficacy of both the investigated complexes are performed by implementing a long range of biophysical studies and a thorough analysis of the results unveils that complex 1 has better interaction efficacy with the macromolecules than complex 2. The binding efficacy of complex 1 is comparatively higher towards both macromolecules because of its pure groove binding mode during interaction with DNA and the presence of an extra H-bond during connection with HSA. The experimental host-guest binding results is fully validated by molecular docking study. Interestingly complex 1 shows better antioxidant properties than complex 2, as well as quercetin, and it has strong anticancer property with minimal damage to normal cells, which is proved by the MTT assay study. Better DNA and HSA binding efficacy of 1 may be the reason for the better anticancer property of complex 1.

6.
ACS Omega ; 7(27): 23276-23288, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35847281

RESUMO

A new versatile azide-bridged polymeric Cu(II) complex, namely, [Cu(L)(µ1,3-N3)]∞ (1), was synthesized utilizing an N,N,O-donor piperidine-based Schiff base ligand (E)-4-bromo-2-((2-(-1-yl)imino)methyl)phenol (HL), obtained via the condensation reaction of 1-(2-aminoethyl) piperidine and 5-bromo salicylaldehyde. The single-crystal X-ray diffraction analysis reveals that complex 1 consists of an end-to-end azido-bridged polymeric network, which is further rationalized with the help of a density functional theory (DFT) study. After routine characterization with a range of physicochemical studies, complex 1 is exploited to evaluate its biomedical potential. Initially, theoretical inspection with the help of a molecular docking study indicated the ability of complex 1 to effectively bind with macromolecules such as DNA and the human serum albumin (HSA) protein. The theoretical aspect was further verified by adopting several spectroscopic techniques. The electronic absorption spectroscopic analysis indicates a remarkable binding efficiency of Complex 1 with both DNA and HSA. The notable fluorescence intensity reduction of the ethidium bromide (EtBr)-DNA adduct, 4',6-diamidino-2-phenylindole (DAPI)-DNA adduct, and HSA after the gradual addition of complex 1 authenticates its promising binding potential with the macromolecules. The retention of the canonical B form of DNA and α form of HSA during the association of complex 1 was confirmed by implementing a circular dichroism spectral study. The association ability of complex 1 with macromolecules further inspired us to inspect its impact on different cell lines such as HeLa (cervical cancer cell), PA1 (ovarian cancer cell), and HEK (normal cell). The dose-dependent and time-dependent in vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay suggests an effective antiproliferative property of complex 1 with low toxicity toward the normal cell line. Finally, the anticancer activity of complex 1 toward carcinoma cell lines was analyzed by nuclear and cellular staining techniques, unveiling the cell death mechanism.

7.
Heliyon ; 8(11): e11345, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36387430

RESUMO

Herein, we have explored the effects of chlorinated mononuclear Cu(II) complex upon binding with BSA protein (bovine serum albumin) and its in vitro anti-proliferative potentiality against SiHa cell. The complex was synthesized involving a Schiff base ligand having N,N,O donor centers and characterized by several spectroscopic studies. Structure, DFT studies and Hirshfeld surface (HS) analyses were identified using crystallographic computational studies. The binding interaction with BSA depicts the efficacy of the complex towards promising binding of it with BSA. Further, the complex shows a moderate cytotoxicity against SiHa cancer cell signifying its potentiality as an anti-proliferative agent for human cervix uteri carcinoma.

8.
J Biomol Struct Dyn ; 40(24): 14188-14203, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34842505

RESUMO

In the present work we have developed one mononuclear Zn(II) complex [Zn(L)(H2O)] (Complex 1) by utilizing a tetracoordinated ligand H2L, formed by simple condensation of 2, 2 dimethyl 1,3 diamino propane and 3- ethoxy salicylaldehyde and one newly designed mononuclear Co (III) complex [Co(L)(L1)] (complex 2) by utilizing (H2L) and 3- ethoxy salicylaldehyde(HL1) as an ancillary ligand. The newly developed complex 2 have been spectroscopically characterized. An interesting phenomenon has been noticed that in presence of ancillary ligand, the solubility in buffer solution and the thermal stability of complex 2 comparatively increases than 1. To check the effect of ancillary ligand, present in complex 2 towards the DNA and HSA binding efficacy, both the complexes have been taken into consideration to inspect their binding potentiality with the macromolecules. The 'on', 'off' fluorescence changes in presence of DNA and HSA, the binding constant values, obtained from electronic spectral titration, iodide induced quenching, competitive binding assay, circular dichroism (CD) spectral titration, time resolved fluorescence experiment unambiguously assure the better binding efficacy of complex 2 with the signal of minor groove binding mode with DNA along with no significant conformational changes of the macromolecules. The strong and spontaneous binding of complex 2 with CT-DNA is further supported by the Isothermal Titration Calorimetry (ITC) study. Furthermore TDDFT calculation of DNA with and without complex 2 significantly authorize the formation of complex 2-DNA adduct during the association. Finally Molecular Docking study properly verifies the experimental findings and provides justified explanation behinds experimental findings.


Assuntos
DNA , Zinco , Simulação de Acoplamento Molecular , Espectrometria de Fluorescência , Ligantes , DNA/química , Dicroísmo Circular
9.
J Phys Chem B ; 125(41): 11364-11373, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34613719

RESUMO

In the present study, a dinuclear bis(µ-acetate) dicopper(II) complex [Cu2L2(µ1.1-CH3COO-)2] has been synthesized from a tridentate NNO Schiff Base ligand L (L = 2,4-dibromo-6-((3-(methylamino)propylimino)methyl)phenol) and characterized by elemental, ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR), 1H NMR, and electrospray ionization-mass spectrometry (ESI-MS) spectroscopic studies. The single-crystal X-ray structure, different noncovalent interactions, Hirshfeld surface analysis, and density functional theory (DFT) studies of the dinuclear complex were determined by crystallographic computational studies. The structural study exposed that the complex consists of the penta-coordinated double µ1.1-acetato-bridged dinuclear units of Cu(II), and it is a centrosymmetric dimer in which the center of inversion lies at the midpoint of two Cu(II) ions. Hirshfeld surface and DFT studies pointed out the probable potentiality of the crystal in prospective binding with the protein. This was experimentally verified by carrying out the binding interaction studies against bovine serum albumin (BSA) protein using various spectroscopic methods. It was observed that the copper(II) complex could strongly bind to BSA and could quench the intrinsic fluorescence of BSA. Further, the studied complex was appraised for cell viability studies against SiHa cancer cells. It is observed that cell viability increases with time, demonstrating the biocompatible nature of the complex.


Assuntos
Complexos de Coordenação , Neoplasias , Animais , Bovinos , Linhagem Celular , Sobrevivência Celular , Complexos de Coordenação/farmacologia , Cobre , Cristalografia por Raios X , DNA , Ligantes , Estudos Prospectivos , Bases de Schiff , Soroalbumina Bovina
10.
ACS Omega ; 6(5): 3659-3674, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33585746

RESUMO

Two fluorescence active bromoaniline-based Schiff base chemosensors, namely, (E)-4-bromo-2-(((4-bromophenyl)imino)methyl)phenol (HL1 ) and (E)-2-(((4-bromophenyl)imino)methyl)phenol (HL2 ), have been employed for the selective and notable detection of Cu2+ and Zn2+ ions, respectively, with the simultaneous formation of two new metal complexes [Cu(L1)2] (1) and [Zn(L2)2] (2). X-ray single crystal analyses indicate that complexes 1 and 2 are tetra-coordinated systems with substantial CH...π/π...π stacking interactions in the solid-state crystal structures. These two complexes are exploited for the next step detection of Al3+ and Hg2+ where complex 2 exhibits impressive results via turn-off fluorescence quenching in (DMSO/H2O) HEPES buffer medium. The sensing phenomena are optimized by UV-vis spectral analyses as well as theoretical calculations (density functional theory and time-dependent density functional theory). The combined detection phenomena of the ligand (HL2 ) and complex 2 are exclusively utilized for the first time to construct a molecular memory device, intensifying their multisensoric properties. Furthermore, the DNA- and human serum albumin (HSA)-binding efficacies of these two complexes are examined by adopting electronic and fluorometric titration methods. Complex 2 shows a higher DNA-binding ability in comparison with complex 1, whereas in the case of HSA, the reverse situation is observed. Finally, the binding modes of both the complexes with DNA and HSA have been investigated through molecular docking studies, suggesting good agreement with the experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA