Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Cell Physiol ; 237(8): 3257-3277, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35791448

RESUMO

Autophagy is an evolutionarily conserved multistep degradation mechanism in eukaryotes, that maintains cellular homoeostasis by replenishing cells with nutrients through catabolic lysis of the cytoplasmic components. This critically coordinated pathway involves sequential processing events that begin with initiation, nucleation, and elongation of phagophores, followed by the formation of  double-membrane vesicles known as autophagosomes. Finally, autophagosomes migrate towards and fuse with lysosomes in mammals and vacuoles in yeast and plants, for the eventual degradation of the intravesicular cargo. Here, we review the recent advances in our understanding of the molecular events that define the process of autophagy.


Assuntos
Autofagossomos , Autofagia , Animais , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Lisossomos/metabolismo , Mamíferos/metabolismo , Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo
2.
Biochem Biophys Res Commun ; 527(2): 489-495, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32336547

RESUMO

Translational regulation has invited considerable interest consequent of its circumstantial dysregulation during cancer genesis. eIF4E (Eukaryotic Initiation Factor 4E) has been identified as an important factor involved in tumor progression by way of instrumenting the convergence of oncogenic signals for up-regulation of Cap-dependent translation. In the backdrop of dramatic eIF4E over-expression in a large population of human cancers, we suggest that the tumorigenic property of eIF4E is strictly attributed to its phosphorylation state. We provide evidence that while phosphorylated eIF4E fails to be sequestered by 4E-BP1, its dephosphorylated form shows overwhelming binding with 4E-BP1 without any consideration to the state of 4E-BP1 phosphorylation to suggest that eIF4E-4EBP1 binding is governed by eIF4E phosphorylation instead of 4E-BP1. We also show that eIF4E engages in Cap-assembly formation preferably in a phosphorylation-dependent manner to suggest that eIF4E phosphorylation rather than 4E-BP1 regulates its availability for Cap-assembly.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Capuzes de RNA/metabolismo , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Fosforilação , Ligação Proteica
3.
Mol Cell Biochem ; 465(1-2): 13-26, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31782083

RESUMO

Cellular signals that influence Cap-dependent translation have assumed significant relevance in the backdrop of their enforced dysregulation during oncogenesis. Eukaryotic initiation factor 4E(eIF4E), the mRNA cap-binding protein, has emerged as a key player to facilitate tumor progression through upregulated cap-dependent translation synchronized with enhanced cell division. We provide evidence that eIF4E phosphorylation is regulated by mTORC1 by virtue of its interaction with Raptor through a novel TPTPNPP motif and consequent phosphorylation invitro and in vivo in a Rapamycin-sensitive manner. While we show that phosphorylation pattern of eIF4E responds faithfully to Rapamycin inhibition, the prolonged exposure to Rapamycin rescues the loss of eIF4E phosphorylation through Mnk1 activation. We also present evidence that eIF4E interacts with the amino terminal domain of S6K1 in a phospho-dependent manner, and this interaction is instrumental in overriding Rapamycin inhibition of S6K1. The data endorses eIF4E as a regulatory subunit that modulates the functional attributes of mTOR effectors to synchronize cap-dependent translation with growth assertion.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Motivos de Aminoácidos , Animais , Fator de Iniciação 4E em Eucariotos/genética , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Células NIH 3T3 , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Proteínas Serina-Treonina Quinases/genética , Proteína Regulatória Associada a mTOR/genética , Proteína Regulatória Associada a mTOR/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Sirolimo/farmacologia
4.
Mol Carcinog ; 55(5): 964-76, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26013878

RESUMO

In spite of the Betulinic acid (BA) being recognized as anticancerous source; its further use in clinical development is greatly hampered because of its poor pharmacokinetic properties. To circumvent these limitations, we synthesized a PI3K target based library of 18 triazole based derivatives and we identified a C-3 cyano analog of betulinic acid (CBA) with significant cell death effects with 5-7 fold higher potency than BA in various cancers. Importantly, no such report is available demonstrating the involvement of BA or its structural analogs in the modulation of PI3K pathway. Using, human leukemia HL-60 cells as a model, we for the first time report that CBA decreased expression of PI3K p110α, p85α, and pAKT in HL-60. Furthermore, we could find significant depletion of pGSK3ß, cyclin D1 and increased expression of p21/cip, p27/Kip proteins. CBA induced G0/G1 cell cycle arrest, increased sub-G0 DNA fraction and annexin V binding of the cells besides imparting the typical surface features of cell death. Also, this target specific inhibition was associated with mitochondrial apoptosis as was reflected by expression studies of various proteins together with reactive oxygen species generation and decline in mitochondrial trans membrane potential. The apoptotic effectors i.e., caspase 8 and caspase 9 were found to get upregulated besides PI3K associated DNA repair enzyme i.e., PARP cleavage was observed. Thus, our results elucidated that CBA or other BA based small molecules inhibit PI3K/AKT pathway with induction of subsequent cancer cell death which may be useful therapeutic strategy against leukemias and possibly other cancers.


Assuntos
Ciclina D1/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Neoplasias/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Triazóis/farmacologia , Triterpenos/agonistas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta , Células HL-60 , Humanos , Células MCF-7 , Neoplasias/genética , Triterpenos Pentacíclicos , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Triazóis/síntese química , Triterpenos/farmacologia , Ácido Betulínico
5.
Nutr Cancer ; 67(1): 156-66, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25412192

RESUMO

The objective of this study was to check the anticancer activity of purified protease inhibitors of Lavatera cashmeriana viz LC-pi I, II, III, and IV (Lavatera cashmeriana protease inhibitors) on A549 (lung) cell. It was found that LC-pi I and II significantly inhibited the proliferation of A549 cells with IC50 value of 54 µg/ml and 38 µg/ml, respectively, whereas inhibition by LC-pi III and IV was negligible. LC-pi I and II were further found to inhibit formation of colonies in a dose-dependent manner. Also, both inhibitors were found to induce apoptosis causing chromatin condensation and DNA fragmentation, without loss of mitochondrial membrane potential. Cell cycle revealed a significant increase of subG0/G1 phase cells that are apoptotic cells. We also demonstrated a dose-dependent decrease in migration of A549 cells on cell migration assay by both inhibitors. Taken together, we demonstrate that LC-pi I and II inhibited proliferation through arresting cells before apoptosis, inducing apoptosis and inhibiting cell migration in human lung cancer cells, but the study warrants further investigation. Our results support the notion that plant protease inhibitors may have the potential to advance as chemopreventive agents.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma/tratamento farmacológico , Descoberta de Drogas , Neoplasias Pulmonares/tratamento farmacológico , Malvaceae/química , Sementes/química , Inibidores de Serina Proteinase/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Etnofarmacologia , Humanos , Índia , Neoplasias Pulmonares/patologia , Medicina Tradicional , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Concentração Osmolar , Ensaio Tumoral de Célula-Tronco
6.
Bioorg Med Chem Lett ; 24(4): 1047-51, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24484897

RESUMO

A convenient and modular synthesis involving diastereoselective Michael addition followed by regioselective Huisgen 1,3-dipolar cycloaddition reaction was carried out to furnish 1,4-disubstituted-1,2,3-triazoles of Ludartin. This reaction scheme involving Michael addition followed by regioselective Huisgen 1,3-dipolar cycloaddition reaction leading to the formation of triazolyl analogs is being reported for the first time. All the triazolyl products were characterised using spectral data analysis. Sulphorhodamine B cytotoxicity screening of the resulting products against a panel of five human cancerous cell-lines revealed that few of the analogs display promising broad spectrum cytotoxic effect. Among all the synthesized compounds, only 3q displayed the best cytotoxic effect with IC50 values of 12, 11, 38, 39 and 8.5 µM but less than the standard Ludartin (1) with IC50 values of 6.3, 7.4, 7.5, 6.9 and 0.5 µM against human neuroblastoma (T98G), lung (A-549), prostate (PC-3), colon (HCT-116) and breast (MCF-7) cancer cell lines, respectively. The present synthesis was designed based on the previous literature reports of Ludartin as an aromatase inhibitor. Our work provides an initial study on structure-activity relationship of triazolyl analogs of sesquiterpene lactones in general and Ludartin (1) in particular.


Assuntos
Antineoplásicos/farmacologia , Sesquiterpenos/farmacologia , Triazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Química Click , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Células MCF-7 , Estrutura Molecular , Sesquiterpenos/síntese química , Sesquiterpenos/química , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
7.
Bioorg Med Chem Lett ; 23(17): 4931-4, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23886685

RESUMO

Diverse amino analogs of Ludartin, a cytotoxic guaianolide and a position isomer of an anticancer drug, Arglabin were prepared through Michael type addition at its highly active α-methylene-γ-lactone motif. The semisynthetic derivatives were subjected to sulphorhodamine B cytotoxicity assay against a panel of four different human cancer cell lines viz. lung (A-549), leukemia (THP-1), prostate (PC-3) and colon (HCT-116) to look into structure-activity relationship. Few of the analogs displayed potent selective cytotoxicity compared to the parent molecule-Ludartin (1). (11R)-13-(Diethyl amine)-11,13-dihydroludartin (6) and (11R)-13-(piperidine)-11,13-dihydroludartin (10) showed almost same cytotoxicity against leukemia cell lines (THP-1) as that of parent molecule-Ludartin, but were more active against colon (HCT-116) cancer cells. (11R)-13-(Morpholine)-11,13-dihydroludartin (11) displayed selectively better cytotoxicity against Leukemia cancer cells (THP-1) exhibiting IC50 of 2.8 µM. (11R)-13-(6-Nitroindazole)-11,13-dihydroludartin (17) was four times more potent than Ludartin with selective cytotoxic effects against prostate cancer cells (2.2 µM) while as (11R)-13-(6-nitroindazole)-11,13-dihydroludartin (18) exhibited three-fold selective cytotoxicity for Lung (A-549) cancer cell lines exhibiting IC50 of 2.6 µM.


Assuntos
Aminas/química , Aminas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citotoxinas/química , Citotoxinas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias/tratamento farmacológico , Sesquiterpenos de Guaiano , Relação Estrutura-Atividade
8.
Biochim Biophys Acta Mol Cell Res ; 1870(4): 119449, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36858209

RESUMO

Ribosomal protein S6 kinase 1 (S6K1), a major downstream effector molecule of mTORC1, regulates cell growth and proliferation by modulating protein translation and ribosome biogenesis. We have recently identified eIF4E as an intermediate in transducing signals from mTORC1 to S6K1 and further demonstrated that the role of mTORC1 is restricted to inducing eIF4E phosphorylation and interaction with S6K1. This interaction relieves S6K1 auto-inhibition and facilitates its hydrophobic motif (HM) phosphorylation and activation as a consequence. These observations underscore a possible involvement of mTORC1 independent kinase in mediating HM phosphorylation. Here, we report mTORC2 as an in-vivo/physiological HM kinase of S6K1. We show that rapamycin-resistant S6K1 truncation mutant ∆NH∆CT continues to display HM phosphorylation with selective sensitivity toward Torin-1. We also show that HM phosphorylation of wildtype S6K1and ∆NH∆CT depends on the presence of mTORC2 regulatory subunit-rictor. Furthermore, truncation mutagenesis and molecular docking analysis reveal the involvement of a conserved 19 amino acid stretch of S6K1 in mediating interaction with rictor. We finally show that deletion of the 19 amino acid region from wildtype S6K1 results in loss of interaction with rictor, with a resultant loss of HM phosphorylation regardless of the presence of functional TOS motif. Our data demonstrate that mTORC2 acts as a physiological HM kinase that can activate S6K1 after its auto-inhibition is overcome by mTORC1. We, therefore, propose a novel mechanism for S6K1 regulation where mTOR complexes 1 and 2 act in tandem to activate the enzyme.


Assuntos
Fator de Iniciação 4E em Eucariotos , Serina-Treonina Quinases TOR , Aminoácidos , Fator de Iniciação 4E em Eucariotos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Simulação de Acoplamento Molecular , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo
9.
Future Oncol ; 7(8): 1007-21, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21823895

RESUMO

The use of natural products with therapeutic properties is as ancient as human civilization and for a long time mineral, plant and animal products were the main sources of drugs. Worldwide sales of medicinal plants, crude extracts and finished products amounted to US$15 billion in 1999 and it increased to $23 billion in 2002. More interestingly, the influence of natural products upon anticancer drug discovery and design cannot be underestimated. Approximately 60% of all drugs in clinical trials are either a natural product, compounds derived from natural products or contain pharmacophores derived from active natural products. Thus, even today, in the presence of massive numbers of agents from combinatorial libraries, compounds from natural sources are still in the forefront of cancer chemotherapeutics as sources of active drug types, as well as being involved in drug discovery in diseases such as microbial and parasitic infections and the control of cholesterol/lipids, among other functions.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Produtos Biológicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Produtos Biológicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Humanos
10.
Cell Cycle ; 20(9): 839-854, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33938392

RESUMO

Eukaryotic translation initiation factor 4E was recently shown to be a substrate of mTORC1, suggesting it may be a mediator of mTORC1 signaling. Here, we present evidence that eIF4E phosphorylated at S209 interacts with TOS motif of S6 Kinase1 (S6K1). We also show that this interaction is sufficient to overcome rapamycin sensitivity and mTORC1 dependence of S6K1. Furthermore, we show that eIF4E-TOS interaction relieves S6K1 from auto-inhibition due to carboxy terminal domain (CTD) and primes it for hydrophobic motif (HM) phosphorylation and activation in mTORC1 independent manner. We conclude that the role of mTORC1 is restricted to engaging eIF4E with S6K1-TOS motif to influence its state of HM phosphorylation and inducing its activation.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Quinases S6 Ribossômicas/química , Proteínas Quinases S6 Ribossômicas/metabolismo , Motivos de Aminoácidos , Animais , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Modelos Biológicos , Células NIH 3T3 , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Sirolimo/farmacologia
11.
Int J Biol Macromol ; 125: 651-659, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30552925

RESUMO

The cap dependent translation initiation is a tightly controlled process of cooperative ternary complex formation by 4E-BP1, eIF4E and the 5' cap of eukaryotic mRNA in response to environmental cues like glucose, nutrients and growth factor levels. Based on the well-described effects of mTORC1/rapamycin complex on 4E-BP1 phosphorylation/s, it is generally accepted that rapamycin is a global inhibitor of cap-dependent translation. We have previously shown that 4E-BP1 resistance to rapamycin was overcome by the stoichiometric abundance of S6K1. Now we present evidence that the TOS-bearing amino terminal domain of S6K1 is sufficient to relieve the rapamycin resistance of 4E-BP1 as TOS deleted variants of S6K1, active or inactive with regard to S6K1 activity failed to bring about relief of 4E-BP1 resistance to rapamycin. We also show that the reciprocal inactivation of S6K1 by abundance of 4E-BP1 gets accomplished only with intact TOS motif in the protein. The data presented in this study identifies eIF4E and not Raptor as a cellular factor responsible to regulate rapamycin sensitivity of 4E-BP1 suggesting that the phosphorylation dynamics and rapamycin sensitivity of 4E-BP1 and S6K1 are regulated independently.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Fosfoproteínas/metabolismo , Sirolimo/farmacologia , Proteínas de Ciclo Celular , Linhagem Celular , Farmacorresistência Bacteriana/fisiologia , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosforilação/fisiologia , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo
12.
Nat Prod Res ; 28(8): 593-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24547772

RESUMO

A comparative study was performed on various parts (shoots, roots and flowers) of Incarvillea emodi. The alcoholic extracts of different parts were fractionated with solvents of different polarity and studied for the determination of total polyphenol content and total antioxidant potential. Furthermore, we have isolated major iridoid glucosides from the dried flowers of I. emodi followed by the comparative cytotoxicity studies of these iridoids against five different human cancer cell lines. The results have demonstrated that ethyl acetate fraction of all parts have higher phenolic content (167.87-294.31 mg/g as gallic acid equivalent) and higher total antioxidant potential (252.95-384.64 mg/g as trolox equivalent). The results of in vitro cytotoxicity studies have indicated that boschnaloside (2) possesses promising anticancer potential against three human cancer cell lines, THP-1, A-549 and PC-3, which belong to leukaemia, lung and prostate cancers, respectively, while plantarenaloside (1) expressed relevant cytotoxic activity against THP-1 cell lines of leukaemia.


Assuntos
Antineoplásicos Fitogênicos/análise , Antioxidantes/química , Bignoniaceae/química , Glucosídeos Iridoides/análise , Iridoides/análise , Fenóis/análise , Polifenóis/análise , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/análise , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Glucosídeos Iridoides/química , Glucosídeos Iridoides/isolamento & purificação , Glucosídeos Iridoides/farmacologia , Iridoides/química , Iridoides/isolamento & purificação , Iridoides/farmacologia , Fenóis/química , Raízes de Plantas/química , Polifenóis/química
13.
Phytomedicine ; 21(6): 919-25, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24629598

RESUMO

The essential oil of different parts of Senecio graciliflorus DC was obtained by hydrodistillation and analysed by GC-FID and GC-MS for the first time. A total of 17, 20, 19 and 17 constituents were identified comprising 99.90, 95.50, 98.93 and 95.96% of the essential oil of flower, leaf, stem and root parts of Senecio graciliflorus respectively. Monoterpene hydrocarbons predominated in the essential oil with 85.28% in flower, 57.53% in leaf, 67.74% in stem and 64.98% in root oil. α-pinene, cis-ocimene, 1,2,3-trimethylcyclohexane and ß-pinene were the major constituents of the essential oil. The flower essential oil exhibited a strong antioxidant potential displaying IC50 values of 21.6±0.6 and 26.0±1.0µg/ml in DPPH and hydroxyl radical assays respectively. On the other hand the essential oil of flower and root displayed highest cytotoxicity against lung (A-549) cancer cell lines (IC50=19.1±0.9 and 21.3±1.1µg/ml respectively. This study which represents the first report of the essential oil composition and bioevaluation of Senecio graciliflorus, can serve as a new source of cytotoxic and antioxidant activity.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Antioxidantes/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Óleos Voláteis/uso terapêutico , Fitoterapia , Estruturas Vegetais/química , Senécio/química , Antineoplásicos Fitogênicos/análise , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/análise , Antioxidantes/farmacologia , Monoterpenos Bicíclicos , Compostos Bicíclicos com Pontes/análise , Linhagem Celular Tumoral , Cicloexanos/análise , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Concentração Inibidora 50 , Monoterpenos/análise , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Óleos de Plantas/química
14.
Eur J Med Chem ; 66: 238-45, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23811086

RESUMO

A series of ursolic acid-1-phenyl-1H-[1,2,3]triazol-4-ylmethylester congeners have been designed and synthesized in an attempt to develop potent antitumor agents. A regioselective approach using Huisgen 1,3-dipolar cycloaddition reaction of ursolic acid-alkyne derivative with various aromatic azides was employed to target an array of triazolyl derivatives in an efficient manner. Their structures were confirmed by using (1)H NMR, (13)C NMR, IR and MS analysis. All the compounds were evaluated for anti-cancer activity against a panel of four human cancer cell lines including A-549 (lung), MCF-7 (breast), HCT-116 (colon), THP-1 (leukemia) and a normal human epithelial cell line (FR-2) using sulforhodamine-B assay. The pharmacological results showed that most of the compounds displayed high level of antitumor activities against the tested cancer cell lines compared with ursolic acid. Compounds 7b, 7g, 7p and 7r were found to be the most potent compounds in this study.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Triazóis/síntese química , Triazóis/farmacologia , Triterpenos/química , Antineoplásicos/química , Linhagem Celular Tumoral , Técnicas de Química Sintética , Humanos , Concentração Inibidora 50 , Triazóis/química , Ácido Ursólico
15.
Asian Pac J Cancer Prev ; 14(6): 3975-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23886217

RESUMO

BACKGROUND: Proteases play a regulatory role in a variety of pathologies including cancer, pancreatitis, thromboembolic disorders, viral infections and many others. One of the possible strategies to combat these pathologies seems to be the use of protease inhibitors. LC-pi I, II, III and IV (Lavatera cashmerian-protease inhibitors) have been found in vitro to strongly inhibit trypsin, chymotrypsin and elastase, proteases contributing to tumour invasion and metastasis, indicated possible anticancer effects. The purpose of this study was to check in vitro anticancer activity of these four inhibitors on human lung cancer cell lines. MATERIAL AND METHODS: In order to assess whether these inhibitors induced in vitro cytoxicity, SRB assay was conducted with THP-1 (leukemia), NCIH322 (lung) and Colo205, HCT-116 (colon) lines. RESULTS: LC-pi I significantly inhibited the cell proliferation of all cells tested and also LC-pi II was active in all except HCT-116. Inhibition of cell growth by LC-pi III and IV was negligible. IC50 values of LC-pi I and II for NCIH322, were less compared to other cell lines suggesting that lung cancer cells are more inhibited. CONCLUSION: These investigations might point to future preventive as well as curative solutions using plant protease inhibitors for various cancers, especially in the lung, hence warranting their further investigation.


Assuntos
Proliferação de Células/efeitos dos fármacos , Malvaceae/química , Neoplasias/patologia , Extratos Vegetais/farmacologia , Inibidores de Proteases/farmacologia , Serina Endopeptidases/química , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Células Tumorais Cultivadas
16.
Anticancer Agents Med Chem ; 13(10): 1552-64, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23438828

RESUMO

Cancer is a diverse class of diseases which differ widely in their cause and biology. The aberrant behavior of cancer reflects up regulation of certain oncogenic signaling pathways that promote proliferation, inhibit apoptosis, and enable the cancer to spread and evoke angiogenesis. Phosphoinositide-3-kinase(PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway controls various biological processes that are important for normal functioning of the cell via cell cycle progression, survival, migration, transcription, translation and metabolism. However, PI3K signaling pathway is dysregulated almost in all cancers which is due to the amplification and genetic mutation of PI3K gene, encoding catalytic and regulatory subunit of PI3K isoforms. The current review focuses on the structural features of various PI3K isoforms including Akt and mTOR and their inhibition using specific small molecule inhibitors in an attempt to achieve an attractive target for cancer prevention and chemotherapy.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Fosfatidilinositol 3-Quinases/genética , Subunidades Proteicas/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Terapia de Alvo Molecular , Mutação , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/uso terapêutico , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
17.
Phytomedicine ; 20(8-9): 723-33, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23453831

RESUMO

The objective of the current study was to evaluate the methanolic root extract of Gentiana kurroo for antioxidant and antiproliferative activities as well as to study the effect of the extract on the induction of apoptosis in human pancreatic cancer cell line (MiaPaCa-2). The extract exerted significant antioxidant activity as verified by DPPH, hydroxyl radical, lipid peroxidation and protective oxidative DNA damage assays. The results were comparable to standard antioxidants like α-tocopherol, catechin and BHT used in such experiments. Antioxidant potential of G. kurroo may be attributed to the presence of high phenolic and flavonoid content (73±1.02 and 46±2.05 mg/g extract respectively). The anti-proliferative property of Gentiana kurroo root extract was determined by sulphorhodamine B (SRB) assay against Human colon cancer cell line (HCT-116), Lung carcinoma cell line (A-549), Pancreatic cancer cell line (MiaPaCa-2), Lung cancer cell line (HOP-62) and acute monocytic leukaemia cell line (THP-1). G. kurroo root extract inhibited cancer cell growth depending upon the cell line used and in a dose dependent manner. The extract induced potent apoptotic effects in MiaPaCa-2 cells. The population of apoptotic cells increased from 11.4% in case of control to 49.6% at 100 µg/ml of G. kurroo root extract. The extract also induced a remarkable decrease in mitochondrial membrane potential (ΔΨm) leading to apoptosis of cancer cells used. The main chemical constituents identified by the liquid chromatography-tandem mass spectrometry (LC-ESI-MSMS) were found to be iridoid glucosides (iridoids and secoiridoids), xanthones and flavonoids. Iridoid glucosides are the bitter principles of Gentiana species. Loganic acid, Sweroside, Swertiamarin, Gentiopicroside, Gentisin, Isogentisin, Gentioside, Norswertianolin, Swertianolin, 4″-O-ß-D-glucosyl-6'-O-(4-O-ß-D-glucosylcaffeoyl)-linearoside and Swertisin were the principal compounds present in the methanol root extract of G. kurroo.


Assuntos
Apoptose/efeitos dos fármacos , Flavonoides/farmacologia , Gentiana/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Antioxidantes/metabolismo , Compostos de Bifenilo/análise , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida , Dano ao DNA/efeitos dos fármacos , Flavonoides/química , Flavonoides/isolamento & purificação , Humanos , Glucosídeos Iridoides/química , Glucosídeos Iridoides/isolamento & purificação , Glucosídeos Iridoides/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo , Fenóis/química , Fenóis/isolamento & purificação , Picratos/análise , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Raízes de Plantas/química , Espectrometria de Massas por Ionização por Electrospray
18.
Eur J Med Chem ; 63: 782-92, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23584541

RESUMO

Cytotoxic agents from nature are presently the mainstay of anticancer chemotherapy, and the need to reinforce the arsenal of anticancer agents is highly desired. Chemical transformation studies carried out on betulinic acid, through concise 1,2,3-triazole synthesis via click chemistry approach at C-3position in ring A have been evaluated for their cytotoxic potentiation against nine human cancer cell lines. Most of the derivatives have shown higher cytotoxic profiles than the parent molecule. Two compounds i.e. 3{1N(2-cyanophenyl)-1H-1,2,3-triazol-4yl}methyloxy betulinic acid (7) and 3{1N(5-hydroxy-naphth-1yl)-1H-1,2,3-triazol-4yl}methyloxy betulinic acid (13) displayed impressive IC50 values (2.5 and 3.5 µM respectively) against leukemia cell line HL-60 (5-7-fold higher potency than betulinic acid). As evident from various biological end points, inhibition of cell migration and colony formation, mitochondrial membrane disruption followed by DNA fragmentation and apoptosis, is demonstrated.


Assuntos
Apoptose/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Triazóis/farmacologia , Triterpenos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Eletroforese em Gel de Ágar , Células HL-60 , Humanos , Concentração Inibidora 50 , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Modelos Químicos , Estrutura Molecular , Triterpenos Pentacíclicos , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química , Triterpenos/síntese química , Triterpenos/química , Ácido Betulínico
19.
Phytomedicine ; 21(1): 30-8, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24055517

RESUMO

The objective of the study was to investigate the anti cancer activity of a lectin isolated from Lotus corniculatus seeds. A tetrameric 70kDa galactose specific lectin was purified using two step simple purification protocol which involved affinity chromatography on AF-BlueHC650M and gel filtration on Sephadex G-100. The lectin was adsorbed on AF-BlueHC650M and desorbed using 1M NaCl in the starting buffer. Gel filtration on Sephadex G-100 yielded a major peak absorbance that gave two bands of 15kDa and 20kDa in SDS PAGE. Hemagglutination activity was completely preserved, when the temperature was in the range of 20-60°C. However, drastic reduction in activity occurred at temperatures above 60°C. Full hemagglutination activity was retained at ambient pH 4-12. Thereafter no activity was observed above pH 13. Hemaglutination of the lectin was inhibited by d-galactose. The lectin showed a strong antiproliferative activity towards human leukemic (THP-1) cancer cells followed by lung cancer (HOP62) cells and HCT116 with an IC50 of 39µg/ml and 50µg/ml and 60µg/ml respectively. Flow cytometry analysis showed an increase in the percentage of cells in sub G0G1 phase confirming that Lotus corniculatus lectin induced apoptosis. Morphological observations showed that Lotus corniculatus lectin (LCL) treated THP-1 cells displayed apparent apoptosis characteristics such as nuclear fragmentation, appearance of membrane enclosed apoptotic bodies and DNA fragmentation. Lotus corniculatus lectin (LCL) effectively inhibits the cell migration in a dose dependent manner as indicated by the wound healing assay.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Leucemia/tratamento farmacológico , Lotus/química , Neoplasias Pulmonares/tratamento farmacológico , Fitoterapia , Extratos Vegetais/uso terapêutico , Lectinas de Plantas/uso terapêutico , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Células HCT116 , Testes de Hemaglutinação , Humanos , Concentração Inibidora 50 , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Lectinas de Plantas/isolamento & purificação , Lectinas de Plantas/farmacologia
20.
Eur J Med Chem ; 49: 55-67, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22245048

RESUMO

A library of 28 compounds comprising of acyl, amino, halo, nitro, styryl and cyclized derivatives of bakuchiol have been evaluated against a panel of eight human cancer cell lines. Bioevaluation studies have resulted in the identification of potent cytotoxic molecules exhibiting concentration dependent growth inhibition against leukemia cancer cells with best results observed for compounds 17 and 22 exhibiting IC(50) 1.8 and 2.0 µM respectively. As evident from various biological end-points, inhibition of cell proliferation by inducing G2/M cell cycle arrest, mitochondrial membrane disruption followed by DNA fragmentation and apoptosis is demonstrated.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Fenóis/química , Fenóis/farmacologia , Psoralea/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA