RESUMO
Molnupiravir (EIDD-2801) is an antiviral that received approval for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection. Treatment of bacteria or cell lines with the active form of molnupiravir, ß-d-N4-hydroxycytidine (NHC, or EIDD-1931), induces mutations in DNA. Yet these results contrast in vivo genotoxicity studies conducted during registration of the drug. Using a CRISPR screen, we found that inactivating the pyrimidine salvage pathway component uridine-cytidine kinase 2 (Uck2) renders cells more tolerant of NHC. Short-term exposure to NHC increased the mutation rate in a mouse myeloid cell line, with most mutations being T:A to C:G transitions. Inactivating Uck2 impaired the mutagenic activity of NHC, whereas over-expression of Uck2 enhanced mutagenesis. UCK2 is upregulated in many cancers and cell lines. Our results suggest differences in ribonucleoside metabolism contribute to the variable mutagenicity of NHC observed in cancer cell lines and primary tissues.
Assuntos
Citidina , Mutagênicos , Uridina Quinase , Animais , Camundongos , Antivirais/toxicidade , Citidina/análogos & derivados , Citidina/farmacologia , Mutagênese , Mutagênicos/farmacologia , RNA Viral , Uridina Quinase/genética , Uridina Quinase/metabolismoRESUMO
Venetoclax (VEN) inhibits the prosurvival protein BCL2 to induce apoptosis and is a standard therapy for chronic lymphocytic leukemia (CLL), delivering high complete remission rates and prolonged progression-free survival in relapsed CLL but with eventual loss of efficacy. A spectrum of subclonal genetic changes associated with VEN resistance has now been described. To fully understand clinical resistance to VEN, we combined single-cell short- and long-read RNA-sequencing to reveal the previously unappreciated scale of genetic and epigenetic changes underpinning acquired VEN resistance. These appear to be multilayered. One layer comprises changes in the BCL2 family of apoptosis regulators, especially the prosurvival family members. This includes previously described mutations in BCL2 and amplification of the MCL1 gene but is heterogeneous across and within individual patient leukemias. Changes in the proapoptotic genes are notably uncommon, except for single cases with subclonal losses of BAX or NOXA. Much more prominent was universal MCL1 gene upregulation. This was driven by an overlying layer of emergent NF-κB (nuclear factor kappa B) activation, which persisted in circulating cells during VEN therapy. We discovered that MCL1 could be a direct transcriptional target of NF-κB. Both the switch to alternative prosurvival factors and NF-κB activation largely dissipate following VEN discontinuation. Our studies reveal the extent of plasticity of CLL cells in their ability to evade VEN-induced apoptosis. Importantly, these findings pinpoint new approaches to circumvent VEN resistance and provide a specific biological justification for the strategy of VEN discontinuation once a maximal response is achieved rather than maintaining long-term selective pressure with the drug.
Assuntos
Antineoplásicos , Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , NF-kappa B , Resistencia a Medicamentos Antineoplásicos/genética , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Recidiva , Antineoplásicos/uso terapêuticoRESUMO
Selective targeting of BCL-2 with the BH3-mimetic venetoclax has been a transformative treatment for patients with various leukemias. TP-53 controls apoptosis upstream of where BCL-2 and its prosurvival relatives, such as MCL-1, act. Therefore, targeting these prosurvival proteins could trigger apoptosis across diverse blood cancers, irrespective of TP53 mutation status. Indeed, targeting BCL-2 has produced clinically relevant responses in blood cancers with aberrant TP-53. However, in our study, TP53-mutated or -deficient myeloid and lymphoid leukemias outcompeted isogenic controls with intact TP-53, unless sufficient concentrations of BH3-mimetics targeting BCL-2 or MCL-1 were applied. Strikingly, tumor cells with TP-53 dysfunction escaped and thrived over time if inhibition of BCL-2 or MCL-1 was sublethal, in part because of an increased threshold for BAX/BAK activation in these cells. Our study revealed the key role of TP-53 in shaping long-term responses to BH3-mimetic drugs and reconciled the disparate pattern of initial clinical response to venetoclax, followed by subsequent treatment failure among patients with TP53-mutant chronic lymphocytic leukemia or acute myeloid leukemia. In contrast to BH3-mimetics targeting just BCL-2 or MCL-1 at doses that are individually sublethal, a combined BH3-mimetic approach targeting both prosurvival proteins enhanced lethality and durably suppressed the leukemia burden, regardless of TP53 mutation status. Our findings highlight the importance of using sufficiently lethal treatment strategies to maximize outcomes of patients with TP53-mutant disease. In addition, our findings caution against use of sublethal BH3-mimetic drug regimens that may enhance the risk of disease progression driven by emergent TP53-mutant clones.
Assuntos
Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Indolizinas/farmacologia , Isoquinolinas/farmacologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Mieloide Aguda/tratamento farmacológico , Morfolinas/farmacologia , Proteínas de Neoplasias/fisiologia , Fragmentos de Peptídeos/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Sulfonamidas/farmacologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/fisiologia , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Dano ao DNA , Genes p53 , Humanos , Indolizinas/uso terapêutico , Subunidade alfa de Receptor de Interleucina-2/deficiência , Isoquinolinas/uso terapêutico , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Morfolinas/uso terapêutico , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Fosforilação Oxidativa/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/administração & dosagem , Sulfonamidas/uso terapêutico , Proteína Supressora de Tumor p53/deficiência , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
MOTIVATION: Calling copy number alterations (CNAs) from RNA sequencing (RNA-Seq) is challenging, because of the marked variability in coverage across genes and paucity of single nucleotide polymorphisms (SNPs). We have adapted SuperFreq to call absolute and allele sensitive CNAs from RNA-Seq. SuperFreq uses an error-propagation framework to combine and maximize information from read counts and B-allele frequencies. RESULTS: We used datasets from The Cancer Genome Atlas (TCGA) to assess the validity of CNA calls from RNA-Seq. When ploidy estimates were consistent, we found agreement with DNA SNP-arrays for over 98% of the genome for acute myeloid leukaemia (TCGA-AML, n = 116) and 87% for colorectal cancer (TCGA-CRC, n = 377). The sensitivity of CNA calling from RNA-Seq was dependent on gene density. Using RNA-Seq, SuperFreq detected 78% of CNA calls covering 100 or more genes with a precision of 94%. Recall dropped for focal events, but this also depended on signal intensity. For example, in the CRC cohort SuperFreq identified all cases (7/7) with high-level amplification of ERBB2, where the copy number was typically >20, but identified only 6% of cases (1/17) with moderate amplification of IGF2, which occurs over a smaller interval. SuperFreq offers an integrated platform for identification of CNAs and point mutations. As evidence of how SuperFreq can be applied, we used it to reproduce the established relationship between somatic mutation load and CNA profile in CRC using RNA-Seq alone. AVAILABILITY AND IMPLEMENTATION: SuperFreq is implemented in R and the code is available through GitHub: https://github.com/ChristofferFlensburg/SuperFreq/. Data and code to reproduce the figures are available at: https://gitlab.wehi.edu.au/flensburg.c/SuperFreq_RNA_paper. Data from TCGA (phs000178) was accessed from GDC following completion of a data access request through the database of Genotypes and Phenotypes (dbGaP). Data from the Leucegene consortium was downloaded from GEO (AML samples: GSE67040; normal CD34+ cells: GSE48846). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Variações do Número de Cópias de DNA , Leucemia Mieloide Aguda , Humanos , RNA-Seq , Análise de Sequência de RNA , Sequenciamento do ExomaRESUMO
Mixed lineage kinase domain-like (MLKL) is a component of the "necrosome," the multiprotein complex that triggers tumor necrosis factor (TNF)-induced cell death by necroptosis. To define the specific role and molecular mechanism of MLKL action, we generated MLKL-deficient mice and solved the crystal structure of MLKL. Although MLKL-deficient mice were viable and displayed no hematopoietic anomalies or other obvious pathology, cells derived from these animals were resistant to TNF-induced necroptosis unless MLKL expression was restored. Structurally, MLKL comprises a four-helical bundle tethered to the pseudokinase domain, which contains an unusual pseudoactive site. Although the pseudokinase domain binds ATP, it is catalytically inactive and its essential nonenzymatic role in necroptotic signaling is induced by receptor-interacting serine-threonine kinase 3 (RIPK3)-mediated phosphorylation. Structure-guided mutation of the MLKL pseudoactive site resulted in constitutive, RIPK3-independent necroptosis, demonstrating that modification of MLKL is essential for propagation of the necroptosis pathway downstream of RIPK3.
Assuntos
Apoptose , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fatores de Necrose Tumoral/metabolismo , Animais , Domínio Catalítico , Linhagem Celular , Cristalografia por Raios X , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necrose , Fosfoproteínas Fosfatases , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Proteínas Quinases/química , Proteínas Quinases/genética , Transdução de SinaisRESUMO
Analysing multiple cancer samples from an individual patient can provide insight into the way the disease evolves. Monitoring the expansion and contraction of distinct clones helps to reveal the mutations that initiate the disease and those that drive progression. Existing approaches for clonal tracking from sequencing data typically require the user to combine multiple tools that are not purpose-built for this task. Furthermore, most methods require a matched normal (non-tumour) sample, which limits the scope of application. We developed SuperFreq, a cancer exome sequencing analysis pipeline that integrates identification of somatic single nucleotide variants (SNVs) and copy number alterations (CNAs) and clonal tracking for both. SuperFreq does not require a matched normal and instead relies on unrelated controls. When analysing multiple samples from a single patient, SuperFreq cross checks variant calls to improve clonal tracking, which helps to separate somatic from germline variants, and to resolve overlapping CNA calls. To demonstrate our software we analysed 304 cancer-normal exome samples across 33 cancer types in The Cancer Genome Atlas (TCGA) and evaluated the quality of the SNV and CNA calls. We simulated clonal evolution through in silico mixing of cancer and normal samples in known proportion. We found that SuperFreq identified 93% of clones with a cellular fraction of at least 50% and mutations were assigned to the correct clone with high recall and precision. In addition, SuperFreq maintained a similar level of performance for most aspects of the analysis when run without a matched normal. SuperFreq is highly versatile and can be applied in many different experimental settings for the analysis of exomes and other capture libraries. We demonstrate an application of SuperFreq to leukaemia patients with diagnosis and relapse samples.
Assuntos
Evolução Clonal , Mutação , Neoplasias/genética , Variações do Número de Cópias de DNA , Humanos , Polimorfismo de Nucleotídeo ÚnicoRESUMO
BACKGROUND: RNA sequencing allows the study of both gene expression changes and transcribed mutations, providing a highly effective way to gain insight into cancer biology. When planning the sequencing of a large cohort of samples, library size is a fundamental factor affecting both the overall cost and the quality of the results. Here we specifically address how overall library size influences the detection of somatic mutations in RNA-seq data in two acute myeloid leukaemia datasets. RESULTS : We simulated shallower sequencing depths by downsampling 45 acute myeloid leukaemia samples (100 bp PE) that are part of the Leucegene project, which were originally sequenced at high depth. We compared the sensitivity of six methods of recovering validated mutations on the same samples. The methods compared are a combination of three popular callers (MuTect, VarScan, and VarDict) and two filtering strategies. We observed an incremental loss in sensitivity when simulating libraries of 80M, 50M, 40M, 30M and 20M fragments, with the largest loss detected with less than 30M fragments (below 90%, average loss of 7%). The sensitivity in recovering insertions and deletions varied markedly between callers, with VarDict showing the highest sensitivity (60%). Single nucleotide variant sensitivity is relatively consistent across methods, apart from MuTect, whose default filters need adjustment when using RNA-Seq. We also analysed 136 RNA-Seq samples from the TCGA-LAML cohort (50 bp PE) and assessed the change in sensitivity between the initial libraries (average 59M fragments) and after downsampling to 40M fragments. When considering single nucleotide variants in recurrently mutated myeloid genes we found a comparable performance, with a 6% average loss in sensitivity using 40M fragments. CONCLUSIONS: Between 30M and 40M 100 bp PE reads are needed to recover 90-95% of the initial variants on recurrently mutated myeloid genes. To extend this result to another cancer type, an exploration of the characteristics of its mutations and gene expression patterns is suggested.
Assuntos
Biblioteca Gênica , Polimorfismo de Nucleotídeo Único/genética , RNA-Seq/métodos , Sequência de Bases , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias/genéticaRESUMO
The tendency of 5-methylcytosine (5mC) to undergo spontaneous deamination has had a major role in shaping the human genome, and this methylation damage remains the primary source of somatic mutations that accumulate with age. How 5mC deamination contributes to cancer risk in different tissues remains unclear. Genomic profiling of 3 early-onset acute myeloid leukemias (AMLs) identified germ line loss of MBD4 as an initiator of 5mC-dependent hypermutation. MBD4-deficient AMLs display a 33-fold higher mutation burden than AML generally, with >95% being C>T in the context of a CG dinucleotide. This distinctive signature was also observed in sporadic cancers that acquired biallelic mutations in MBD4 and in Mbd4 knockout mice. Sequential sampling of germ line cases demonstrated repeated expansion of blood cell progenitors with pathogenic mutations in DNMT3A, a key driver gene for both clonal hematopoiesis and AML. Our findings reveal genetic and epigenetic factors that shape the mutagenic influence of 5mC. Within blood cells, this links methylation damage to the driver landscape of clonal hematopoiesis and reveals a conserved path to leukemia. Germ line MBD4 deficiency enhances cancer susceptibility and predisposes to AML.
Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , Endodesoxirribonucleases/genética , Regulação Leucêmica da Expressão Gênica , Hematopoese , Leucemia Mieloide Aguda/genética , Adulto , DNA Metiltransferase 3A , Feminino , Deleção de Genes , Células Germinativas/metabolismo , Células Germinativas/patologia , Humanos , Leucemia Mieloide Aguda/patologia , Masculino , Mutação , Acúmulo de MutaçõesRESUMO
The theory of evolution by natural selection shapes our understanding of the living world. While natural selection has given rise to all the intricacies of life on the planet, those responsible for treating cancer have a darker view of adaptation and selection. Revolutionary changes in DNA sequencing technology have allowed us to survey the complexities that constitute the cancer genome, while advances in genetic engineering are allowing us to functionally interrogate these alterations. These approaches are providing new insights into how mutations influence cancer biology. It is possible that with time, this new knowledge will allow us to take control of the evolutionary processes that shape the disease, to develop more effective treatments.
Assuntos
Mutação/genética , Neoplasias/genética , Animais , Evolução Molecular , Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Seleção Genética/genéticaRESUMO
Enhancer of zeste 2 (Ezh2) mainly methylates lysine 27 of histone-H3 (H3K27me3) as part of the polycomb repressive complex 2 (PRC2) together with Suz12 and Eed. However, Ezh2 can also modify non-histone substrates, although it is unclear whether this mechanism has a role during development. Here, we present evidence for a chromatin-independent role of Ezh2 during T-cell development and immune homeostasis. T-cell-specific depletion of Ezh2 induces a pronounced expansion of natural killer T (NKT) cells, although Ezh2-deficient T cells maintain normal levels of H3K27me3. In contrast, removal of Suz12 or Eed destabilizes canonical PRC2 function and ablates NKT cell development completely. We further show that Ezh2 directly methylates the NKT cell lineage defining transcription factor PLZF, leading to its ubiquitination and subsequent degradation. Sustained PLZF expression in Ezh2-deficient mice is associated with the expansion of a subset of NKT cells that cause immune perturbation. Taken together, we have identified a chromatin-independent function of Ezh2 that impacts on the development of the immune system.
Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Homeostase , Imunidade/genética , Animais , Diferenciação Celular , Linhagem Celular , Expressão Gênica , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Metilação , Camundongos , Camundongos Knockout , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Proteína com Dedos de Zinco da Leucemia Promielocítica , Ligação Proteica , Proteólise , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Timócitos/citologia , Timócitos/imunologia , Timócitos/metabolismoRESUMO
We report two patients with leukaemia driven by the rare CNTRL-FGFR1 fusion oncogene. This fusion arises from a t(8;9)(p12;q33) translocation, and is a rare driver of biphenotypic leukaemia in children. We used RNA sequencing to report novel features of expressed CNTRL-FGFR1, including CNTRL-FGFR1 fusion alternative splicing. From this knowledge, we designed and tested a Droplet Digital PCR assay that detects CNTRL-FGFR1 expression to approximately one cell in 100 000 using fusion breakpoint-specific primers and probes. We also utilised cell-line models to show that effective tyrosine kinase inhibitors, which may be included in treatment regimens for this disease, are only those that block FGFR1 phosphorylation.
Assuntos
Proteínas de Ciclo Celular/genética , Leucemia/genética , Leucemia/terapia , Terapia de Alvo Molecular/métodos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Criança , Humanos , Lactente , Masculino , Fusão Oncogênica , Proteínas de Fusão Oncogênica/genética , Reação em Cadeia da Polimerase/métodos , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
BCL2 blunts activation of the mitochondrial pathway to apoptosis, and high-level expression is required for chronic lymphocytic leukemia (CLL) survival. Venetoclax (ABT-199) is a small-molecule selective inhibitor of BCL2 currently in clinical trials for CLL and other malignancies. In conjunction with the phase 1 first-in-human clinical trial of venetoclax in patients with relapsed or refractory CLL (M12-175), we investigated the mechanism of action of venetoclax in vivo, explored whether in vitro sensitivity assays or BH3 profiling correlated with in vivo responses in patients, and determined whether loss of TP53 function affected responses in vitro and in vivo. In all samples tested, venetoclax induced death of CLL cells in vitro at concentrations achievable in vivo, with cell death evident within 4 hours. Apoptotic CLL cells were detected in vivo 6 or 24 hours after a single 20-mg or 50-mg dose in some patients. The extent of mitochondrial depolarization by a BIM BH3 peptide in vitro was correlated with percentage reduction of CLL in the blood and bone marrow in vivo, whereas the half lethal concentration derived from standard cytotoxicity assays was not. CLL cell death in vitro and the depth of clinical responses were independent of deletion of chromosome 17p, TP53 mutation, and TP53 function. These data provide direct evidence that venetoclax kills CLL cells in a TP53-independent fashion by inhibition of BCL2 in patients and support further assessment of BH3 profiling as a predictive biomarker for this drug.
Assuntos
Apoptose/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Leucemia Linfocítica Crônica de Células B/patologia , Sulfonamidas/farmacologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Tempo , Proteína Supressora de Tumor p53/genéticaRESUMO
BACKGROUND: Patients with BRCA1-like tumors correlate with improved response to DNA double-strand break-inducing therapy. A gene expression-based classifier was developed to distinguish between BRCA1-like and non-BRCA1-like tumors. We hypothesized that these tumors may also be more sensitive to PARP inhibitors than standard treatments. METHODS: A diagnostic gene expression signature (BRCA1ness) was developed using a centroid model with 128 triple-negative breast cancer samples from the EU FP7 RATHER project. This BRCA1ness signature was then tested in HER2-negative patients (n = 116) from the I-SPY 2 TRIAL who received an oral PARP inhibitor veliparib in combination with carboplatin (V-C), or standard chemotherapy alone. We assessed the association between BRCA1ness and pathologic complete response in the V-C and control arms alone using Fisher's exact test, and the relative performance between arms (biomarker × treatment interaction, likelihood ratio p < 0.05) using a logistic model and adjusting for hormone receptor status (HR). RESULTS: We developed a gene expression signature to identify BRCA1-like status. In the I-SPY 2 neoadjuvant setting the BRCA1ness signature associated significantly with response to V-C (p = 0.03), but not in the control arm (p = 0.45). We identified a significant interaction between BRCA1ness and V-C (p = 0.023) after correcting for HR. CONCLUSIONS: A genomic-based BRCA1-like signature was successfully translated to an expression-based signature (BRC1Aness). In the I-SPY 2 neoadjuvant setting, we determined that the BRCA1ness signature is capable of predicting benefit of V-C added to standard chemotherapy compared to standard chemotherapy alone. TRIAL REGISTRATION: I-SPY 2 TRIAL beginning December 31, 2009: Neoadjuvant and Personalized Adaptive Novel Agents to Treat Breast Cancer (I-SPY 2), NCT01042379 .
Assuntos
Proteína BRCA1/genética , Biomarcadores Tumorais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/patologia , Quimioterapia Adjuvante , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Terapia Neoadjuvante , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Inibidores de Poli(ADP-Ribose) Polimerases/efeitos adversos , Sensibilidade e Especificidade , Resultado do Tratamento , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologiaRESUMO
Polycomb repressive complex 2 (PRC2) is a chromatin modifier that regulates stem cells in embryonic and adult tissues. Loss-of-function studies of PRC2 components have been complicated by early embryonic dependence on PRC2 activity and the partial functional redundancy of enhancer of zeste homolog 1 (Ezh1) and enhancer of zeste homolog 2 (Ezh2), which encode the enzymatic component of PRC2. Here, we investigated the role of PRC2 in hematopoiesis by conditional deletion of suppressor of zeste 12 protein homolog (Suz12), a core component of PRC2. Complete loss of Suz12 resulted in failure of hematopoiesis, both in the embryo and the adult, with a loss of maintenance of hematopoietic stem cells (HSCs). In contrast, partial loss of PRC2 enhanced HSC self-renewal. Although Suz12 was required for lymphoid development, deletion in individual blood cell lineages revealed that it was dispensable for the development of granulocytic, monocytic, and megakaryocytic cells. Collectively, these data reveal the multifaceted role of PRC2 in hematopoiesis, with divergent dose-dependent effects in HSC and distinct roles in maturing blood cells. Because PRC2 is a potential target for cancer therapy, the significant consequences of modest changes in PRC2 activity, as well as the cell and developmental stage-specific effects, will need to be carefully considered in any therapeutic context.
Assuntos
Células-Tronco Hematopoéticas/fisiologia , Linfopoese/genética , Complexo Repressor Polycomb 2/fisiologia , Animais , Proliferação de Células/genética , Células Cultivadas , Feto/imunologia , Feto/fisiologia , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Complexo Repressor Polycomb 2/genéticaRESUMO
Polycomb repressive complex 2 (PRC2) plays a key role in hematopoietic stem and progenitor cell (HSPC) function. Analyses of mouse mutants harboring deletions of core components have implicated PRC2 in fine-tuning multiple pathways that instruct HSPC behavior, yet how PRC2 is targeted to specific genomic loci within HSPCs remains unknown. Here we use short hairpin RNA-mediated knockdown to survey the function of PRC2 accessory factors that were defined in embryonic stem cells (ESCs) by testing the competitive reconstitution capacity of transduced murine HSPCs. We find that, similar to the phenotype observed upon depletion of core subunit Suz12, depleting Jarid2 enhances the competitive transplantation capacity of both fetal and adult mouse HSPCs. Furthermore, we demonstrate that depletion of JARID2 enhances the in vitro expansion and in vivo reconstitution capacity of human HSPCs. Gene expression profiling revealed common Suz12 and Jarid2 target genes that are enriched for the H3K27me3 mark established by PRC2. These data implicate Jarid2 as an important component of PRC2 that has a central role in coordinating HSPC function.
Assuntos
Regulação Neoplásica da Expressão Gênica , Complexo Repressor Polycomb 2/metabolismo , Animais , Antígenos CD34/metabolismo , Linhagem da Célula , Perfilação da Expressão Gênica , Hematopoese , Células-Tronco Hematopoéticas/citologia , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Fígado/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Fenótipo , RNA Interferente Pequeno/metabolismo , Células-Tronco/citologiaRESUMO
Deregulation of polycomb group complexes polycomb repressive complex 1 (PRC1) and 2 (PRC2) is associated with human cancers. Although inactivating mutations in PRC2-encoding genes EZH2, EED, and SUZ12 are present in T-cell acute lymphoblastic leukemia and in myeloid malignancies, gain-of-function mutations in EZH2 are frequently observed in B-cell lymphoma, implying disease-dependent effects of individual mutations. We show that, in contrast to PRC1, PRC2 is a tumor suppressor in Eµ-myc lymphomagenesis, because disease onset was accelerated by heterozygosity for Suz12 or by short hairpin RNA-mediated knockdown of Suz12 or Ezh2. Accelerated lymphomagenesis was associated with increased accumulation of B-lymphoid cells in the absence of effects on apoptosis or cell cycling. However, Suz12-deficient B-lymphoid progenitors exhibit enhanced serial clonogenicity. Thus, PRC2 normally restricts the self-renewal of B-lymphoid progenitors, the disruption of which contributes to lymphomagenesis. This finding provides new insight regarding the functional contribution of mutations in PRC2 in a range of leukemias.
Assuntos
Linfócitos B/fisiologia , Linfoma de Células B/genética , Complexo Repressor Polycomb 2/genética , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Linfócitos B/citologia , Células Cultivadas , Proteína Potenciadora do Homólogo 2 de Zeste , Regulação Neoplásica da Expressão Gênica/fisiologia , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Linfopoese/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismoRESUMO
Diffuse gastric cancers typically present as late-stage tumours and, as a result, the 5 year survival rate is poor. Some gastric cancers are hereditary and these tend to be of the diffuse type; 30-40% of hereditary diffuse gastric cancers (HDGCs) can be explained by defective germline alleles of E-cadherin (CDH1), but for the remaining families the factors driving susceptibility remain unknown. We had access to a large HDGC pedigree with no obvious mutation in CDH1, and applied exome sequencing to identify new genes involved in gastric cancer. We identified a germline truncating allele of α-E-catenin (CTNNA1) that was present in two family members with invasive diffuse gastric cancer and four in which intramucosal signet ring cells were detected as part of endoscopic surveillance. The remaining CTNNA1 allele was silenced in the two diffuse gastric cancers from the family that were available for screening, and this was also true for signet ring cells identified in endoscopic biopsies. Since α-E-catenin functions in the same complex as E-cadherin, our results call attention to the broader signalling network surrounding these proteins in HDGC. We also detected somatic mutations in one tumour and found substantial overlap with genes mutated in sporadic gastric cancer, including PIK3CA, ARID1A, MED12 and MED23.
Assuntos
Caderinas/genética , Polimorfismo Genético/genética , Transdução de Sinais , Neoplasias Gástricas/genética , alfa Catenina/genética , Idoso , Alelos , Sequência de Aminoácidos , Antígenos CD , Caderinas/metabolismo , DNA de Neoplasias/genética , Exoma , Feminino , Biblioteca Gênica , Ligação Genética , Predisposição Genética para Doença , Genótipo , Mutação em Linhagem Germinativa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Análise de Sequência de DNA , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , alfa Catenina/metabolismoRESUMO
Oncogenic fusion genes that involve kinases have proven to be effective targets for therapy in a wide range of cancers. Unfortunately, the diagnostic approaches required to identify these events are struggling to keep pace with the diverse array of genetic alterations that occur in cancer. Diagnostic screening in solid tumours is particularly challenging, as many fusion genes occur with a low frequency. To overcome these limitations, we developed a capture enrichment strategy to enable high-throughput transcript sequencing of the human kinome. This approach provides a global overview of kinase fusion events, irrespective of the identity of the fusion partner. To demonstrate the utility of this system, we profiled 100 non-small cell lung cancers and identified numerous genetic alterations impacting fibroblast growth factor receptor 3 (FGFR3) in lung squamous cell carcinoma and a novel ALK fusion partner in lung adenocarcinoma.
Assuntos
Adenocarcinoma/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/genética , Proteínas de Fusão Oncogênica/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Quinase do Linfoma Anaplásico , Sequência de Bases , Proteínas de Ligação a Calmodulina/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/patologia , Estudos de Coortes , Éxons , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/patologia , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Mutação , Proteínas do Tecido Nervoso/genética , Receptores Proteína Tirosina Quinases/genética , Análise de Sequência de RNARESUMO
MOTIVATION: Target enrichment, also referred to as DNA capture, provides an effective way to focus sequencing efforts on a genomic region of interest. Capture data are typically used to detect single-nucleotide variants. It can also be used to detect copy number alterations, which is particularly useful in the context of cancer, where such changes occur frequently. In copy number analysis, it is a common practice to determine log-ratios between test and control samples, but this approach results in a loss of information as it disregards the total coverage or intensity at a locus. RESULTS: We modeled the coverage or intensity of the test sample as a linear function of the control sample. This regression approach is able to deal with regions that are completely deleted, which are problematic for methods that use log-ratios. To demonstrate the utility of our approach, we used capture data to determine copy number for a set of 600 genes in a panel of nine breast cancer cell lines. We found high concordance between our results and those generated using a single-nucleotide polymorphsim genotyping platform. When we compared our results with other log-ratio-based methods, including ExomeCNV, we found that our approach produced better overall correlation with SNP data. AVAILABILITY: The algorithm is implemented in C and R and the code can be downloaded from http://bioinformatics.nki.nl/ocs/ CONTACT: l.wessels@nki.nl SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.