Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Biochemistry ; 61(14): 1495-1507, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35737522

RESUMO

Understanding the structure and structure-function relationships of membrane proteins is a fundamental problem in biomedical research. Given the difficulties inherent to performing mechanistic biochemical and biophysical studies of membrane proteins in vitro, we previously developed a facile HeLa cell-based cell-free expression (CFE) system that enables the efficient reconstitution of full-length (FL) functional inner nuclear membrane Sad1/UNC-84 (SUN) proteins (i.e., SUN1 and SUN2) in supported lipid bilayers. Here, we provide evidence that suggests that the reconstitution of CFE-synthesized FL membrane proteins in supported lipid bilayers occurs primarily through the fusion of endoplasmic reticulum-derived microsomes present within our CFE reactions with our supported lipid bilayers. In addition, we demonstrate the ease with which our synthetic biology platform can be used to investigate the impact of the chemical environment on the ability of CFE-synthesized FL SUN proteins reconstituted in supported lipid bilayers to interact with the luminal domain of the KASH protein nesprin-2. Moreover, we use our platform to study the molecular requirements for the homo- and heterotypic interactions between SUN1 and SUN2. Finally, we show that our platform can be used to simultaneously reconstitute three different CFE-synthesized FL membrane proteins in a single supported lipid bilayer. Overall, these results establish our HeLa cell-based CFE and supported lipid bilayer reconstitution platform as a powerful tool for performing mechanistic dissections of the oligomerization and function of FL membrane proteins in vitro. While our platform is not a substitute for cell-based studies, it does provide important mechanistic insights into the biology of difficult-to-study membrane proteins.


Assuntos
Bicamadas Lipídicas , Membrana Nuclear , Animais , Células HeLa , Humanos , Bicamadas Lipídicas/metabolismo , Mamíferos/metabolismo , Proteínas de Membrana/química , Proteínas Associadas aos Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo
2.
J Cell Sci ; 132(4)2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30262467

RESUMO

The linker of nucleoskeleton and cytoskeleton (LINC) is a conserved nuclear envelope-spanning molecular bridge that is responsible for the mechanical integration of the nucleus with the cytoskeleton. LINC complexes are formed by a transluminal interaction between the outer and inner nuclear membrane KASH and SUN proteins, respectively. Despite recent structural insights, our mechanistic understanding of LINC complex assembly remains limited by the lack of an experimental system for its in vitro reconstitution and manipulation. Here, we describe artificial nuclear membranes (ANMs) as a synthetic biology platform based on mammalian cell-free expression for the rapid reconstitution of SUN proteins in supported lipid bilayers. We demonstrate that SUN1 and SUN2 are oriented in ANMs with solvent-exposed C-terminal KASH-binding SUN domains. We also find that SUN2 possesses a single transmembrane domain, while SUN1 possesses three. Finally, SUN protein-containing ANMs bind synthetic KASH peptides, thereby reconstituting the LINC complex core. This work represents the first in vitro reconstitution of KASH-binding SUN proteins in supported lipid bilayers using cell-free expression, which will be invaluable for testing proposed models of LINC complex assembly and its regulation.


Assuntos
Citoesqueleto/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microtúbulos/metabolismo , Matriz Nuclear/metabolismo , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Biologia Sintética/métodos
3.
Phys Biol ; 15(1): 013001, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29091050

RESUMO

Engineering artificial cells to mimic one or multiple fundamental cell biological functions is an emerging area of synthetic biology. Reconstituting functional modules from biological components in vitro is a challenging yet an important essence of bottom-up synthetic biology. Here we describe the concept of building artificial platelets using bottom-up synthetic biology and the four functional modules that together could enable such an ambitious effort.


Assuntos
Células Artificiais/citologia , Plaquetas/fisiologia , Biologia Sintética
5.
bioRxiv ; 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38187764

RESUMO

Transmembrane ß-barrels (TMBs) are widely used for single molecule DNA and RNA sequencing and have considerable potential for a broad range of sensing and sequencing applications. Current engineering approaches for nanopore sensors are limited to naturally occurring channels such as CsgG, which have evolved to carry out functions very different from sensing, and hence provide sub-optimal starting points. In contrast, de novo protein design can in principle create an unlimited number of new nanopores with any desired properties. Here we describe a general approach to the design of transmembrane ß-barrel pores with different diameter and pore geometry. NMR and crystallographic characterization shows that the designs are stably folded with structures close to the design models. We report the first examples of de novo designed TMBs with 10, 12 and 14 stranded ß-barrels. The designs have distinct conductances that correlate with their pore diameter, ranging from 110 pS (~0.5 nm pore diameter) to 430 pS (~1.1 nm pore diameter), and can be converted into sensitive small-molecule sensors with high signal to noise ratio. The capability to generate on demand ß-barrel pores of defined geometry opens up fundamentally new opportunities for custom engineering of sequencing and sensing technologies.

6.
bioRxiv ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38187589

RESUMO

A general method for designing proteins to bind and sense any small molecule of interest would be widely useful. Due to the small number of atoms to interact with, binding to small molecules with high affinity requires highly shape complementary pockets, and transducing binding events into signals is challenging. Here we describe an integrated deep learning and energy based approach for designing high shape complementarity binders to small molecules that are poised for downstream sensing applications. We employ deep learning generated psuedocycles with repeating structural units surrounding central pockets; depending on the geometry of the structural unit and repeat number, these pockets span wide ranges of sizes and shapes. For a small molecule target of interest, we extensively sample high shape complementarity pseudocycles to generate large numbers of customized potential binding pockets; the ligand binding poses and the interacting interfaces are then optimized for high affinity binding. We computationally design binders to four diverse molecules, including for the first time polar flexible molecules such as methotrexate and thyroxine, which are expressed at high levels and have nanomolar affinities straight out of the computer. Co-crystal structures are nearly identical to the design models. Taking advantage of the modular repeating structure of pseudocycles and central location of the binding pockets, we constructed low noise nanopore sensors and chemically induced dimerization systems by splitting the binders into domains which assemble into the original pseudocycle pocket upon target molecule addition.

7.
ACS Synth Biol ; 8(8): 1913-1920, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31310519

RESUMO

The bottom-up assembly of synthetic cell systems capable of recapitulating biological functions has become a means to understand living matter by construction. The integration of biomolecular components into active, cell-sized, genetically programmed compartments remains, however, a major bottleneck for building synthetic cells. A primary feature of real cells is their ability to actively interact with their surroundings, particularly in stressed conditions. Here, we construct a synthetic cell equipped with an inducible genetic circuit that responds to changes in osmotic pressure through the mechanosensitive channel MscL. Liposomes loaded with an E. coli cell-free transcription-translation (TXTL) system are induced with IPTG when exposed to hypo-osmotic solution, resulting in the expression of a bacterial cytoskeletal protein MreB. MreB associates with the membrane to generate a cortex-like structure. Our work provides the first example of molecular integration that couples mechanosensitivity, gene expression, and self-assembly at the inner membrane of synthetic cells.


Assuntos
Técnicas Biossensoriais/métodos , Sistema Livre de Células/metabolismo , Escherichia coli/metabolismo , Redes Reguladoras de Genes , Biossíntese de Proteínas , Biologia Sintética/métodos
8.
ACS Nano ; 13(9): 10221-10232, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31401835

RESUMO

The number of engineered nanoparticles for applications in the biomedical arena has grown tremendously over the last years due to advances in the science of synthesis and characterization. For most applications, the crucial step is the transport through a physiological cellular membrane. However, the behavior of nanoparticles in a biological matrix is a very complex problem that depends not only on the type of nanoparticle but also on its size, shape, phase, surface charge, chemical composition, and agglomeration state. In this paper, we introduce a streamlined theoretical model that predicts the average time of entry of nanoparticles in lipid membranes, using a combination of molecular dynamics simulations and statistical approaches. The model identifies four parameters that separate the contributions of nanoparticle characteristics (i.e., size, shape, solubility) from the membrane properties (density distribution). This factorization allows the inclusion of data obtained from both experimental and computational sources, as well as a rapid estimation of large sets of permutations in membranes. The robustness of the model is supported by experimental data carried out in lipid vesicles encapsulating graphene quantum dots as nanoparticles. Given the high level of interest across multiple areas of study in modulating intracellular targets, and the need to understand and improve the applications of nanoparticles and to assess their effect on human health (i.e., cytotoxicity, bioavailability), this work contributes to the understanding and prediction of interactions between nanoparticles and lipid membranes.


Assuntos
Bicamadas Lipídicas/química , Nanopartículas/química , Grafite/química , Tamanho da Partícula , Permeabilidade , Probabilidade , Pontos Quânticos/química , Reprodutibilidade dos Testes , Termodinâmica , Fatores de Tempo
9.
Synth Syst Biotechnol ; 3(2): 130-134, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29900426

RESUMO

Point-of-care molecular diagnostic tests show great promise for providing accurate, timely results in low-infrastructure healthcare settings and at home. The design space for these tests is limited by a variety of possible background reactions, which often originate from relatively weak promiscuous activities of the enzymes used for nucleic acid amplification. When this background signal is amplified alongside the signal of the intended biomarker, the dynamic range of the test can be severely compromised. Therefore, a detailed knowledge of potential side reactions arising from enzyme promiscuity can improve rational design of point-of-care molecular diagnostic tests. Towards this end, we report a previously unknown synergistic reaction between T7 RNA polymerase and Bsu DNA polymerase that produces nucleic acid in the presence of single-stranded DNA or RNA. This reaction occurs in the absence of any previously reported substrates for either polymerases and compromises a theoretical microRNA amplification scheme utilizing these polymerases.

10.
Synth Biol (Oxf) ; 3(1): ysy005, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30003145

RESUMO

Transcription and translation are two critical processes during eukaryotic gene expression that regulate cellular activities. The development of mammalian cell-free expression (CFE) systems provides a platform for studying these two critical processes in vitro for bottom-up synthetic biology applications such as construction of an artificial cell. Moreover, real-time monitoring of the dynamics of synthesized mRNA and protein is key to characterize and optimize gene circuits before implementing in living cells or in artificial cells. However, there are few tools for measurement of mRNA and protein dynamics in mammalian CFE systems. Here, we developed a locked nucleic acid (LNA) probe for monitoring transcription in a HeLa-based CFE system in real-time. By using this LNA probe in conjunction with a fluorescent reporter protein, we were able to simultaneously monitor mRNA and protein dynamics in bulk reactions and cell-sized single-emulsion droplets. We found rapid production of mRNA transcripts that decreased over time as protein production ensued in bulk reactions. Our results also showed that transcription in cell-sized droplets has different dynamics compared to the transcription in bulk reactions. The use of this LNA probe in conjunction with fluorescent proteins in HeLa-based mammalian CFE system provides a versatile in vitro platform for studying mRNA dynamics for bottom-up synthetic biology applications.

11.
Chem Commun (Camb) ; 53(53): 7349-7352, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28524182

RESUMO

The bottom-up construction of cell-sized compartments programmed with DNA that are capable of sensing the chemical and physical environment remains challenging in synthetic cell engineering. Here, we construct mechanosensitive liposomes with biosensing capability by expressing the E. coli channel MscL and a calcium biosensor using cell-free expression.


Assuntos
Técnicas Biossensoriais , DNA/química , Mecanotransdução Celular , Cálcio/análise , Cálcio/metabolismo , Proteínas de Escherichia coli/genética , Canais Iônicos/genética , Lipossomos/química , Lipossomos/metabolismo
12.
PLoS One ; 12(3): e0174689, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28358875

RESUMO

Development of artificial cell models requires encapsulation of biomolecules within membrane-bound compartments. There have been limited studies of using mammalian cell-free expression (CFE) system as the 'cytosol' of artificial cells. We exploit glass capillary droplet microfluidics for the encapsulation of mammalian CFE within double emulsion templated vesicles. The complexity of the physicochemical properties of HeLa cell-free lysate poses a challenge compared with encapsulating simple buffer solutions. In particular, we discovered the formation of aggregates in double emulsion templated vesicles encapsulating mammalian HeLa CFE, but not with bacterial CFE. The aggregates did not arise from insolubility of the proteins made from CFE nor due to the interaction of mammalian CFE with the organic solvents in the middle phase of the double emulsions. We found that aggregation is dependent on the concentration of poly(vinyl) alcohol (PVA) surfactant, a critical double emulsion-stabilizing surfactant, and the lysate concentration in mammalian CFE. Despite vesicle instability and reduced protein expression, we demonstrate protein expression by encapsulating mammalian CFE system. Using mass spectrometry and Western blot, we identified and verified that actin is one of the proteins inside the mammalian CFE that aggregated with PVA surfactant. Our work establishes a baseline description of mammalian CFE system encapsulated in double emulsion templated vesicles as a platform for building artificial cells.


Assuntos
Sistema Livre de Células/química , Álcool de Polivinil/química , Agregados Proteicos , Solventes/química , Células Artificiais/química , Extratos Celulares/química , Vidro/química , Células HeLa , Humanos , Microfluídica/métodos , Tamanho da Partícula , Surfactantes Pulmonares/química
13.
Sci Rep ; 5: 14725, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26437925

RESUMO

We devise a new approach for capturing complex interfacial interactions over reduced length scales, towards predicting electrokinetic energy conversion efficiencies of nanofluidic devices. By embedding several aspects of intermolecular interactions in continuum based formalism, we show that our simple theory becomes capable of representing complex interconnections between electro-mechanics and hydrodynamics over reduced length scales. The predictions from our model are supported by reported experimental data, and are in excellent quantitative agreement with molecular dynamics simulations. The present model, thus, may be employed to rationalize the discrepancies between low energy conversion efficiencies of nanofluidic channels that have been realized from experiments, and the impractically high energy conversion efficiencies that have been routinely predicted by the existing theories.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA