Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 97(8): e0050923, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37578232

RESUMO

Viruses can utilize host splicing machinery to enable the expression of multiple genes from a limited-sized genome. Orthobornaviruses use alternative splicing to regulate the expression level of viral proteins and achieve efficient viral replication in the nucleus. Although more than 20 orthobornaviruses have been identified belonging to eight different viral species, virus-specific splicing has not been demonstrated. Here, we demonstrate that the glycoprotein (G) transcript of parrot bornavirus 4 (PaBV-4; species Orthobornavirus alphapsittaciforme), a highly virulent virus in psittacines, undergoes mRNA splicing and expresses a soluble isoform termed sGP. Interestingly, the splicing donor for sGP is not conserved in other orthobornaviruses, including those belonging to the same orthobornavirus species, suggesting that this splicing has evolved as a PaBV-4-specific event. We have also shown that exogenous expression of sGP does not affect PaBV-4 replication or de novo virion infectivity. In this study, to investigate the role of sGP in viral replication, we established a reverse genetics system for PaBV-4 by using avian cell lines and generated a recombinant virus lacking the spliced mRNA for sGP. Using the recombinant viruses, we show that the replication of the sGP-deficient virus is significantly slower than that of the wild-type virus and that the exogenous expression of sGP cannot restore its propagation efficiency. These results suggest that autologous or controlled expression of sGP by splicing may be important for PaBV-4 propagation. The reverse genetics system for avian bornaviruses developed here will be a powerful tool for understanding the replication strategies and pathogenesis of avian orthobornaviruses. IMPORTANCE Parrot bornavirus 4 (PaBV-4) is the dominant cause of proventricular dilatation disease, a severe gastrointestinal and central nervous system disease among avian bornaviruses. In this study, we discovered that PaBV-4 expresses a soluble isoform of glycoprotein (G), called sGP, through alternative splicing of the G mRNA, which is unique to this virus. To understand the role of sGP in viral replication, we generated recombinant PaBV-4 lacking the newly identified splicing donor site for sGP using a reverse genetics system and found that its propagation was significantly slower than that of the wild-type virus, suggesting that sGP plays an essential role in PaBV-4 infection. Our results provide important insights not only into the replication strategy but also into the pathogenesis of PaBV-4, which is the most prevalent bornavirus in captive psittacines worldwide.


Assuntos
Doenças das Aves , Bornaviridae , Infecções por Mononegavirales , Papagaios , Animais , Bornaviridae/genética , Glicoproteínas/genética , Infecções por Mononegavirales/patologia , Infecções por Mononegavirales/virologia , Papagaios/genética , Isoformas de Proteínas/genética , Genética Reversa , RNA Mensageiro
2.
PLoS Comput Biol ; 19(5): e1011173, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37253076

RESUMO

Viruses evolve in infected host populations, and host population dynamics affect viral evolution. RNA viruses with a short duration of infection and a high peak viral load, such as SARS-CoV-2, are maintained in human populations. By contrast, RNA viruses characterized by a long infection duration and a low peak viral load (e.g., borna disease virus) can be maintained in nonhuman populations, and the process of the evolution of persistent viruses has rarely been explored. Here, using a multi-level modeling approach including both individual-level virus infection dynamics and population-scale transmission, we consider virus evolution based on the host environment, specifically, the effect of the contact history of infected hosts. We found that, with a highly dense contact history, viruses with a high virus production rate but low accuracy are likely to be optimal, resulting in a short infectious period with a high peak viral load. In contrast, with a low-density contact history, viral evolution is toward low virus production but high accuracy, resulting in long infection durations with low peak viral load. Our study sheds light on the origin of persistent viruses and why acute viral infections but not persistent virus infection tends to prevail in human society.


Assuntos
COVID-19 , Viroses , Vírus , Animais , Humanos , SARS-CoV-2/genética , Vírus/genética
3.
J Gen Virol ; 103(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35819821

RESUMO

Borna disease virus 1 (BoDV-1) is a non-segmented, negative-strand RNA virus that is characterized by persistent infection in the nucleus and low production of progeny virions. This feature impedes not only the harvesting of infectious viral particles from infected cells but also the rescue of high titres of recombinant BoDV-1 (rBoDV-1) by reverse genetics. Here, we demonstrate that exogenous expression of both matrix protein (M) and glycoprotein (G), which are constituents of the viral lipid envelope, significantly facilitates the formation of infectious particles and propagation of BoDV-1 without affecting its viral RNA synthesis. Furthermore, simultaneous transfection of M and G expression plasmids with N, P and L helper plasmids by reverse genetics drastically enhances the rescue efficiency of rBoDV-1. On the other hand, we also show that overexpression of M induces obvious cytotoxicity similar to that of other Mononegaviruses. Together with our recent report showing that excess expression of G induces aberrant accumulation of immature G, a potential stimulator of the host innate immune response, it is conceivable that BoDV-1 may suppress excess expression of M and G to reduce the cytopathic effect, thereby leading to maintenance of persistent infection. Our results contribute not only to the establishment of an efficient method to recover high-titre BoDV-1 but also to understanding the unique mechanism of persistent BoDV-1 infection.


Assuntos
Vírus da Doença de Borna , Animais , Vírus da Doença de Borna/genética , Núcleo Celular , Glicoproteínas/genética , RNA Viral/genética , Vírion
4.
J Virol ; 95(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33268525

RESUMO

An RNA virus-based episomal vector (REVec) whose backbone is Borna disease virus 1 (BoDV-1) can provide long-term gene expression in transduced cells. To improve the transduction efficiency of REVec, we evaluated the role of the viral envelope glycoprotein (G) of the genus Orthobornavirus, including that of BoDV-1, in the production of infectious particles. By using G-pseudotype assay in which the lack of G in G-deficient REVec (ΔG-REVec) was compensated for expression of G, we found that excess expression of BoDV-1-G does not affect particle production itself but results in uncleaved and aberrant mature G expression in the cells, leading to the production of REVec particles with low transduction titers. We revealed that the expression of uncleaved G in the cells inhibits the incorporation of mature G and vgRNA into the particles. This feature of G was conserved among mammalian and avian orthobornaviruses; however, the cleavage efficacy of canary bornavirus 1 (CnBV-1)-G was exceptionally not impaired by its excess expression, which led to the production of the pseudotype ΔG-REVec with the highest titer. Chimeric G proteins between CnBV-1 and -2 revealed that the signal peptide of CnBV-1-G was responsible for the cleavage efficacy through the interaction with intracellular furin. We showed that CnBV-1 G leads to the development of pseudotyped REVec with high transduction efficiency and a high-titer recombinant REVec. Our study demonstrated that the restricted expression of orthobornavirus G contributes to the regulation of infectious particle production, the mechanism of which can improve the transduction efficiency of REVec.IMPORTANCE Most viruses causing persistent infection produce few infectious particles from the infected cells. Borna disease virus 1, a member of the genus Orthobornavirus, is an RNA virus that persistently infects the nucleus and has been applied to vectors for long-term gene expression. In this study, we showed that, common among orthobornaviruses, excessive G expression does not affect particle production itself but reduces the production of infectious particles with mature G and genomic RNA. This result suggested that limited G expression contributes to suppressing abnormal viral particle production. On the other hand, we found that canary bornavirus 1 has an exceptional G maturation mechanism and produces a high-titer virus. Our study will contribute to not only understanding the mechanism of infectious particle production but also improving the vector system of orthobornaviruses.

5.
J Virol ; 95(14): e0203020, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33952640

RESUMO

Endogenous retroviruses (ERVs) are sequences in animal genomes that originated from ancient retrovirus infections; they provide genetic novelty in hosts by being coopted as functional genes or elements during evolution. Recently, we demonstrated that endogenous elements from not only from retroviruses but also nonretroviral RNA viruses are a possible source of functional genes in host animals. The remnants of ancient bornavirus infections, called endogenous bornavirus-like elements (EBLs), are present in the genomes of a wide variety of vertebrate species, and some express functional products in host cells. Previous studies have predicted that the human EBL locus derived from bornavirus nucleoprotein, termed hsEBLN-2, expresses mRNA encoding a protein, suggesting that hsEBLN-2 has acquired a cellular function during evolution. However, the detailed function of the hsEBLN-2-derived product remains to be elucidated. In this study, we show that the hsEBLN-2-derived protein E2 acts as a mitochondrial protein that interacts with mitochondrial host factors associated with apoptosis, such as HAX-1. We also demonstrate that knockdown of hsEBLN-2-derived RNA increased the levels of PARP and caspase-3 cleavage and markedly decreased cell viability. In contrast, overexpression of E2 enhanced cell viability, as well as the intracellular stability of HAX-1, under stress conditions. Our results suggest that hsEBLN-2 has been coopted as a host gene, the product of which is involved in cell viability by interacting with mitochondrial proteins. IMPORTANCE Our genomes contain molecular fossils of ancient viruses, called endogenous virus elements (EVEs). Mounting evidence suggests that EVEs derived from nonretroviral RNA viruses have acquired functions in host cells during evolution. Previous studies have revealed that a locus encoding a bornavirus-derived EVE, hsEBLN-2, which was generated approximately 43 million years ago in a human ancestor, may be linked to the development of some tumors. However, the function of hsEBLN-2 has not been determined. In this study, we found that the E2 protein, an expression product of hsEBLN-2, interacts with apoptosis-related host proteins as a mitochondrial protein and affects cell viability. This study suggests that nonretroviral RNA viral EVEs have been coopted by hosts with more diverse functions than previously thought, showing a pivotal role for RNA virus infection in evolution.


Assuntos
Bornaviridae/genética , Sobrevivência Celular/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Genoma Humano , Células HEK293 , Células HeLa , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/fisiologia , Nucleoproteínas/genética , RNA Viral , RNA-Seq , Transcriptoma
6.
Microbiol Immunol ; 66(1): 24-30, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34617609

RESUMO

Borna disease virus (BoDV), a nonsegmented, negative-sense RNA virus, establishes persistent infection and replicates in the cell nucleus. Since BoDV genomic RNA exists as episomal RNA, the host genome is not invaded by BoDV infection. These unique features make BoDV a promising gene delivery system as an RNA virus-based episomal vector (REVec). Previously, the stable expression of genes of interest in vitro and in vivo using a REVec was reported. For the clinical application of a REVec, the fundamental properties under various physical and chemical conditions must be determined to develop purification processes, supply chains, and biosafety management. This study investigated the effects of the following conditions on the inducibility of transmission-defective ΔG-REVec: freeze-thaw cycles, dehydration, UV, temperature, pH, and reagents for virucides and laboratory experiments. Although the titer of ΔG-REVec was not influenced by the freeze-thaw process or 5 minute incubation at ≤50°C, ΔG-REVec was significantly inactivated by incubation at ≥70°C for 5 minutes. The induction titer of ΔG-REVec was decreased by long-term incubation, dehydration, and UV irradiation in a temperature- and time-dependent manner. ΔG-REVec was sensitive to lower pH and inactivated by chemical reagents under general conditions. These results provide important knowledge for developing the clinical use of REVec and biosafety management.


Assuntos
Vírus da Doença de Borna , Animais , Vírus da Doença de Borna/genética , Infecção Persistente , Plasmídeos/genética , Estimulação Química , Replicação Viral
7.
J Virol ; 94(6)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31852792

RESUMO

Cells sense pathogen-derived double-stranded RNA (dsRNA) as nonself. To avoid autoimmune activation by self dsRNA, cells utilize A-to-I editing by adenosine deaminase acting on RNA 1 (ADAR1) to disrupt dsRNA structures. Considering that viruses have evolved to exploit host machinery, A-to-I editing could benefit innate immune evasion by viruses. Borna disease virus (BoDV), a nuclear-replicating RNA virus, may require escape from nonself RNA-sensing and immune responses to establish persistent infection in the nucleus; however, the strategy by which BoDV evades nonself recognition is unclear. Here, we evaluated the involvement of ADARs in BoDV infection. The infection efficiency of BoDV was markedly decreased in both ADAR1 and ADAR2 knockdown cells at the early phase of infection. Microarray analysis using ADAR2 knockdown cells revealed that ADAR2 reduces immune responses even in the absence of infection. Knockdown of ADAR2 but not ADAR1 significantly reduced the spread and titer of BoDV in infected cells. Furthermore, ADAR2 knockout decreased the infection efficiency of BoDV, and overexpression of ADAR2 rescued the reduced infectivity in ADAR2 knockdown cells. However, the growth of influenza A virus, which causes acute infection in the nucleus, was not affected by ADAR2 knockdown. Moreover, ADAR2 bound to BoDV genomic RNA and induced A-to-G mutations in the genomes of persistently infected cells. We finally demonstrated that BoDV produced in ADAR2 knockdown cells induces stronger innate immune responses than those produced in wild-type cells. Taken together, our results suggest that BoDV utilizes ADAR2 to edit its genome to appear as "self" RNA in order to maintain persistent infection in the nucleus.IMPORTANCE Cells use the editing activity of adenosine deaminase acting on RNA proteins (ADARs) to prevent autoimmune responses induced by self dsRNA, but viruses can exploit this process to their advantage. Borna disease virus (BoDV), a nuclear-replicating RNA virus, must escape nonself RNA sensing by the host to establish persistent infection in the nucleus. We evaluated whether BoDV utilizes ADARs to prevent innate immune induction. ADAR2 plays a key role throughout the BoDV life cycle. ADAR2 knockdown reduced A-to-I editing of BoDV genomic RNA, leading to the induction of a strong innate immune response. These data suggest that BoDV exploits ADAR2 to edit nonself genomic RNA to appear as self RNA for innate immune evasion and establishment of persistent infection.


Assuntos
Adenosina Desaminase/metabolismo , Vírus da Doença de Borna/fisiologia , Núcleo Celular/metabolismo , Genoma Viral , Edição de RNA , RNA Viral/biossíntese , Proteínas de Ligação a RNA/metabolismo , Adenosina Desaminase/genética , Animais , Doença de Borna/genética , Doença de Borna/metabolismo , Núcleo Celular/genética , Núcleo Celular/virologia , Cães , Humanos , Células Madin Darby de Rim Canino , RNA Viral/genética , Proteínas de Ligação a RNA/genética
8.
Microbiol Immunol ; 65(11): 492-504, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34324219

RESUMO

Persistent intranuclear infection is an uncommon infection strategy among RNA viruses. However, Borna disease virus 1 (BoDV-1), a nonsegmented, negative-strand RNA virus, maintains viral infection in the cell nucleus by forming structured aggregates of viral ribonucleoproteins (vRNPs), and by tethering these vRNPs onto the host chromosomes. To better understand the nuclear infection strategy of BoDV-1, we determined the host protein interactors of the BoDV-1 large (L) protein. By proximity-dependent biotinylation, we identified several nuclear host proteins interacting with BoDV-1 L, one of which is TRMT112, a partner of several methyltransferases (MTases). TRMT112 binds with BoDV-1 L at the RNA-dependent RNA polymerase domain, together with BUD23, an 18S ribosomal RNA MTase and 40S ribosomal maturation factor. We then discovered that BUD23-TRMT112 mediates the chromosomal tethering of BoDV-1 vRNPs, and that the MTase activity is necessary in the tethering process. These findings provide us a better understanding on how nuclear host proteins assist the chromosomal tethering of BoDV-1, as well as new prospects of host-viral interactions for intranuclear infection strategy of orthobornaviruses.


Assuntos
Vírus da Doença de Borna , Metiltransferases/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Animais , Vírus da Doença de Borna/genética , Vírus da Doença de Borna/fisiologia , Núcleo Celular , Cromossomos
9.
Microbiol Immunol ; 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29771464

RESUMO

Accumulation of amyloid ß (Aß40 and Aß42) in the brain is a characteristic of Alzheimer's disease (AD). Because neprilysin (NEP) is a major Aß-degrading enzyme, NEP delivery in the brain is a promising gene therapy for AD. Borna disease virus (BoDV) vector enables long-term transduction of foreign genes in the central nerve system. Here, we evaluated the proteolytic ability of NEP transduced by the BoDV vector and found that the amounts of Aß40 and Aß42 significantly decreased, which suggests that NEP expressed from the BoDV vector is functional to degrade Aß.

10.
RNA ; 21(10): 1691-703, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26283688

RESUMO

Endogenous bornavirus-like nucleoprotein elements (EBLNs) are sequences within vertebrate genomes derived from reverse transcription and integration of ancient bornaviral nucleoprotein mRNA via the host retrotransposon machinery. While species with EBLNs appear relatively resistant to bornaviral disease, the nature of this association is unclear. We hypothesized that EBLNs could give rise to antiviral interfering RNA in the form of PIWI-interacting RNAs (piRNAs), a class of small RNA known to silence transposons but not exogenous viruses. We found that in both rodents and primates, which acquired their EBLNs independently some 25-40 million years ago, EBLNs are present within piRNA-generating regions of the genome far more often than expected by chance alone (ℙ = 8 × 10(-3)-6 × 10(-8)). Three of the seven human EBLNs fall within annotated piRNA clusters and two marmoset EBLNs give rise to bona fide piRNAs. In both rats and mice, at least two of the five EBLNs give rise to abundant piRNAs in the male gonad. While no EBLNs are syntenic between rodent and primate, some of the piRNA clusters containing EBLNs are; thus we deduce that EBLNs were integrated into existing piRNA clusters. All true piRNAs derived from EBLNs are antisense relative to the proposed ancient bornaviral nucleoprotein mRNA. These observations are consistent with a role for EBLN-derived piRNA-like RNAs in interfering with ancient bornaviral infection. They raise the hypothesis that retrotransposon-dependent virus-to-host gene flow could engender RNA-mediated, sequence-specific antiviral immune memory in metazoans analogous to the CRISPR/Cas system in prokaryotes.


Assuntos
Memória Imunológica/fisiologia , Pseudogenes , RNA Interferente Pequeno/fisiologia , Animais , Mamíferos , Primatas , Ratos
11.
Virol J ; 14(1): 126, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28693611

RESUMO

BACKGROUND: Borna disease virus (BoDV), which has a negative-sense, single-stranded RNA genome, causes persistent infection in the cell nucleus. The nuclear export signal (NES) of the viral nucleoprotein (N) consisting of leucine at positions 128 and 131 and isoleucine at positions 133 and 136 overlaps with one of two predicted binding sites for the viral phosphoprotein (P). A previous study demonstrated that higher expression of BoDV-P inhibits nuclear export of N; however, the function of N NES in the interaction with P remains unclear. We examined the subcellular localization, viral polymerase activity, and P-binding ability of BoDV-N NES mutants. We also characterized a recombinant BoDV (rBoDV) harboring an NES mutation of N. RESULTS: BoDV-N with four alanine-substitutions in the leucine and isoleucine residues of the NES impaired its cytoplasmic localization and abolished polymerase activity and P-binding ability. Although an alanine-substitution at position 131 markedly enhanced viral polymerase activity as determined by a minigenome assay, rBoDV harboring this mutation showed expression of viral RNAs and proteins relative to that of wild-type rBoDV. CONCLUSIONS: Our results demonstrate that BoDV-N NES has a dual function in BoDV replication, i.e., nuclear export of N and an interaction with P, affecting viral polymerase activity in the nucleus.


Assuntos
Vírus da Doença de Borna/fisiologia , Sinais de Exportação Nuclear , Nucleoproteínas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Estruturais Virais/metabolismo , Replicação Viral , Transporte Ativo do Núcleo Celular , Análise Mutacional de DNA , Células HEK293 , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Nucleoproteínas/genética , Ligação Proteica
12.
Microbiol Immunol ; 61(9): 380-386, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28776750

RESUMO

Borna disease virus (BoDV), a prototype of mammalian bornavirus, is a non-segmented, negative strand RNA virus that often causes severe neurological disorders in infected animals, including horses and sheep. Unique among animal RNA viruses, BoDV transcribes and replicates non-cytopathically in the cell nucleus, leading to establishment of long-lasting persistent infection. This striking feature of BoDV indicates its potential as an RNA virus vector system. It has previously been demonstrated by our team that recombinant BoDV (rBoDV) lacking an envelope glycoprotein (G) gene develops persistent infections in transduced cells without loss of the viral genome. In this study, a novel non-transmissive rBoDV, rBoDV ΔMG, which lacks both matrix (M) and G genes in the genome, is reported. rBoDV-ΔMG expressing green fluorescence protein (GFP), rBoDV ΔMG-GFP, was efficiently generated in Vero/MG cells stably expressing both BoDV M and G proteins. Infection with rBoDV ΔMG-GFP was persistently maintained in the parent Vero cells without propagation within cell culture. The optimal ratio of M and G for efficient viral particle production by transient transfection of M and G expression plasmids into cells persistently infected with rBoDV ΔMG-GFP was also demonstrated. These findings indicate that the rBoDV ΔMG-based BoDV vector may provide an extremely safe virus vector system and could be a novel strategy for investigating the function of M and G proteins and the host range of bornaviruses.


Assuntos
Doença de Borna/transmissão , Vírus da Doença de Borna/genética , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Proteínas do Envelope Viral/genética , Proteínas da Matriz Viral/genética , Animais , Doença de Borna/virologia , Vírus da Doença de Borna/patogenicidade , Linhagem Celular , Chlorocebus aethiops , Genoma Viral/genética , Glicoproteínas/genética , Células HEK293 , Humanos , RNA Viral/genética , Células Vero , Replicação Viral/genética
13.
Microbiol Immunol ; 60(6): 437-41, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27166599

RESUMO

In this study, the genome sequence of a new parrot bornavirus-5 (PaBV-5) detected in Eclectus roratus was determined. Phylogenetic analysis showed that the genus Bornavirus is divided into three major clades and that PaBV-5 belongs to clade 2, which contains avian viruses that exhibit infectivity to mammalian cells. Sequence comparisons of the regions known to interact with host factors indicated that the clade 2 avian viruses possess sequences intermediate between the clade 1 mammalian viruses and the clade 3 avian viruses, suggesting that the identified regions might contribute to the differences in virological properties between the three clades.


Assuntos
Bornaviridae/genética , Papagaios/virologia , Animais , Sequência de Bases , Doenças das Aves/virologia , Bornaviridae/química , Bornaviridae/classificação , Genoma Viral , Japão , Filogenia , RNA Viral/genética , Análise de Sequência , Análise de Sequência de DNA
14.
J Gen Virol ; 96(11): 3198-3203, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26333388

RESUMO

Borna disease virus (BDV) is a non-segmented, negative-strand RNA virus that establishes persistent infection in the nucleus. Although BDV forms viral inclusion bodies, termed viral speckles of transcripts (vSPOTs), which are associated with chromatin in the nucleus, the host factors involved in the maintenance of vSPOTs remain largely unknown. In this study, we identified X-linked RNA-binding motif protein (RBMX) as a nuclear factor interacting with BDV nucleoprotein. Interestingly, knockdown of RBMX led to disruption of the formation of vSPOTs and reduced both transcription and replication of BDV. Our results indicate that RBMX is involved in the maintenance of the structure of the virus factory in the nucleus.


Assuntos
Vírus da Doença de Borna/metabolismo , Núcleo Celular/virologia , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Vírus da Doença de Borna/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Interações Hospedeiro-Patógeno , Humanos , Corpos de Inclusão Viral/metabolismo , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Ligação Proteica , Transporte Proteico
15.
Nature ; 460(7258): 1021-5, 2009 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-19672242

RESUMO

Influenza A viruses cause recurrent outbreaks at local or global scale with potentially severe consequences for human health and the global economy. Recently, a new strain of influenza A virus was detected that causes disease in and transmits among humans, probably owing to little or no pre-existing immunity to the new strain. On 11 June 2009 the World Health Organization declared that the infections caused by the new strain had reached pandemic proportion. Characterized as an influenza A virus of the H1N1 subtype, the genomic segments of the new strain were most closely related to swine viruses. Most human infections with swine-origin H1N1 influenza viruses (S-OIVs) seem to be mild; however, a substantial number of hospitalized individuals do not have underlying health issues, attesting to the pathogenic potential of S-OIVs. To achieve a better assessment of the risk posed by the new virus, we characterized one of the first US S-OIV isolates, A/California/04/09 (H1N1; hereafter referred to as CA04), as well as several other S-OIV isolates, in vitro and in vivo. In mice and ferrets, CA04 and other S-OIV isolates tested replicate more efficiently than a currently circulating human H1N1 virus. In addition, CA04 replicates efficiently in non-human primates, causes more severe pathological lesions in the lungs of infected mice, ferrets and non-human primates than a currently circulating human H1N1 virus, and transmits among ferrets. In specific-pathogen-free miniature pigs, CA04 replicates without clinical symptoms. The assessment of human sera from different age groups suggests that infection with human H1N1 viruses antigenically closely related to viruses circulating in 1918 confers neutralizing antibody activity to CA04. Finally, we show that CA04 is sensitive to approved and experimental antiviral drugs, suggesting that these compounds could function as a first line of defence against the recently declared S-OIV pandemic.


Assuntos
Vírus da Influenza A Subtipo H1N1/fisiologia , Suínos/virologia , Animais , Anticorpos Antivirais/imunologia , Antivirais/farmacologia , Linhagem Celular , Cães , Feminino , Furões/virologia , Proteína HN/metabolismo , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/enzimologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Macaca fascicularis/imunologia , Macaca fascicularis/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Doenças dos Primatas/patologia , Doenças dos Primatas/virologia , Doenças dos Suínos/patologia , Doenças dos Suínos/virologia , Porco Miniatura/virologia , Replicação Viral
16.
Jpn J Nurs Sci ; 21(1): e12561, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37727042

RESUMO

AIM: This study clarifies the physical, psychological, and social forms of distress in, and care needs of, cardiac surgery patients, including optimal times for supporting them in their post-hospital discharge daily lives. METHODS: Semi-structured qualitative interviews were conducted. Participants included 12 adults (11 male and one female, mean age = 66.5 years) who had undergone cardiac surgery, experienced intensive care, and received outpatient care at the first post-discharge visit (around 2 ~ 3 weeks after discharge), around 3 months after discharge, and between 3 months and 1 year after discharge. Verbatim transcripts were analyzed based on similarities and differences for codes based on assessment items, and subcategories and categories were generated. RESULTS: After surgery, patients experienced physical, psychological, and social distress. First, they experienced physical pain shortly after discharge. Moreover, as they recovered at home, a gap between their sense of their recovery and the perceptions of those around them about their recovery often persisted, which led to psychological and social distress. Patients gained a sense of safety through "assurance of physical recovery" and security through "shared subjective distress." CONCLUSIONS: Post-cardiac surgery patients seek reassurance and safety by sharing experiences owing to daily life distress. Our findings could help provide better support to meet the care needs of such patients.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Alta do Paciente , Adulto , Humanos , Masculino , Feminino , Idoso , Assistência ao Convalescente , Dor , Cuidados Críticos , Pesquisa Qualitativa
17.
iScience ; 27(1): 108641, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38299028

RESUMO

Patients with chronic cardiomyopathy may have persistent viral infections in their hearts, particularly with SARS-CoV-2, which targets the ACE2 receptor highly expressed in human hearts. This raises concerns about a potential global heart failure pandemic stemming from COVID-19, an SARS-CoV-2 pandemic in near future. Although faced with this healthcare caveat, there is limited research on persistent viral heart infections, and no models have been established. In this study, we created an SARS-CoV-2 persistent infection model using human iPS cell-derived cardiac microtissues (CMTs). Mild infections sustained viral presence without significant dysfunction for a month, indicating persistent infection. However, when exposed to hypoxic conditions mimicking ischemic heart diseases, cardiac function deteriorated alongside intracellular SARS-CoV-2 reactivation in cardiomyocytes and disrupted vascular network formation. This study demonstrates that SARS-CoV-2 persistently infects the heart opportunistically causing cardiac dysfunction triggered by detrimental stimuli such as ischemia, potentially predicting a post COVID-19 era heart failure pandemic.

18.
Tissue Eng Part A ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38832872

RESUMO

Investigating the infection mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the airway epithelium and developing effective defense strategies against infection are important. To achieve this, establishing appropriate infection models is crucial. Therefore, various in vitro models, such as cell lines and primary cultures, and in vivo models involving animals that exhibit SARS-CoV-2 infection and genetically humanized animals have been used as animal models. However, no animal model has been established that allows infection experiments with human cells under the physiological environment of airway epithelia. Therefore, we aimed to establish a novel animal model that enables infection experiments using human cells. Human induced pluripotent stem cell-derived airway epithelial cell-transplanted nude rats (hiPSC-AEC rats) were used, and infection studies were performed by spraying lentiviral pseudoviruses containing SARS-CoV-2 spike protein and the GFP gene on the tracheae. After infection, immunohistochemical analyses revealed the existence of GFP-positive-infected transplanted cells in the epithelial and submucosal layers. In this study, a SARS-CoV-2 infection animal model including human cells was established mimicking infection through respiration, and we demonstrated that the hiPSC-AEC rat could be used as an animal model for basic research and the development of therapeutic methods for human-specific respiratory infectious diseases.

19.
J Virol ; 86(1): 121-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22013054

RESUMO

Oseltamivir-resistant H1N1 influenza viruses emerged in 2007 to 2008 and have subsequently circulated widely. However, prior to 2007 to 2008, viruses possessing the neuraminidase (NA) H274Y mutation, which confers oseltamivir resistance, generally had low growth capability. NA mutations that compensate for the deleterious effect of the NA H274Y mutation have since been identified. Given the importance of the functional balance between hemagglutinin (HA) and NA, we focused on amino acid changes in HA. Reverse genetic analysis showed that a mutation at residue 82, 141, or 189 of the HA protein promotes virus replication in the presence of the NA H274Y mutation. Our findings thus identify HA mutations that contributed to the replacement of the oseltamivir-sensitive viruses of 2007 to 2008.


Assuntos
Substituição de Aminoácidos , Antivirais/farmacologia , Farmacorresistência Viral , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/virologia , Oseltamivir/farmacologia , Replicação Viral , Sequência de Aminoácidos , Substituição de Aminoácidos/efeitos dos fármacos , Animais , Linhagem Celular , Farmacorresistência Viral/efeitos dos fármacos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Neuraminidase/genética , Neuraminidase/metabolismo , Filogenia , Alinhamento de Sequência , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
20.
J Virol ; 86(1): 19-24, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22031950

RESUMO

Prestimulation of the TLR4 pathway with lipopolysaccharide (LPS) protects mice from lethal infection with H5N1 influenza virus. Here, we reveal that the TLR4-TRIF pathway is required for this protective effect by using mice whose TLR4-related molecules were knocked out. Microarray analysis of primary mouse lung culture cells that were LPS pretreated and infected with an H5N1 virus indicated that TLR3 mRNA was upregulated. Primary lung culture cells of TLR3 knockout mice showed no response to LPS pretreatment against H5N1 virus infection, suggesting that TLR3 is also involved in the preventive effect of LPS. Our data suggest that the TLR4-TRIF axis has an important role in stimulating protective innate immunity against H5N1 influenza A virus infection and that TLR3 signaling is involved in this pathway.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/imunologia , Virus da Influenza A Subtipo H5N1/fisiologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Transdução de Sinais , Receptor 4 Toll-Like/imunologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Linhagem Celular , Humanos , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , Influenza Humana/genética , Influenza Humana/virologia , Pulmão/imunologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor 4 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA