Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(3): 1917-1928, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38115720

RESUMO

Reduction mechanisms between hydrazine and a multi-epoxide arrangement were investigated on a finite-sized graphene-oxide model with density functional theory. Three multistep reaction pathways were explored to examine different graphene-oxide (GO) deoxygenation scenarios. Epoxides sharing the same hexagonal ring show the typical one-by-one elimination of the oxygen functional groups through two protonation steps and the formation of cis-diazine and water. Nevertheless, the migration of one of the epoxy groups to an out-of-ring position has to precede the reduction. When a hexagonal ring separates two epoxy groups, forming a partially reduced surface with two hydroxyl groups is energetically favoured. This reduction product is so stable that it may remain on the surface after the termination of the reduction process. If further deoxygenation occurs, it can lead to surface fragmentation due to the ring opening of the remaining epoxides. The formation of nitrogen-containing functional groups at the edge of the graphene-oxide flake is also considered, and their surface presence is evaluated based on their thermodynamic stabilities.

2.
Phys Chem Chem Phys ; 23(43): 24738-24749, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34709254

RESUMO

Density functional theory is employed to model the chemisorption of ammonia on epoxy-containing polycyclic aromatic hydrocarbons (PAHs) and understand the reaction mechanism of ammonia addition on partially reduced graphene oxide flakes. Coronene (C24H12) and ovalene (C32H14) based four-epoxy group containing molecules are used to mimic the RGO surface properties. The reaction mechanism changing effect of a second ammonia molecule as well as explicit water molecules is considered. The proposed reaction mechanism consists of two steps: the migration of one epoxy group out of the modelled four-epoxy group formation to a thermodynamically less stable one and the nucleophilic addition of the ammonia molecule. The second step involves forming an amine group and reducing an epoxy group to a hydroxyl one. Interestingly, the forming amine group bonds to the carbon atom with the smallest bond order among the available ones and not necessarily to the carbon atom of the opening epoxy ring. Incorporating a second ammonia molecule has a negligible effect on the overall reaction mechanism, while in the presence of one water molecule, the reaction goes through a different pathway involving a trimolecular state during the nucleophilic addition. Including more than one water molecule or applying an implicit solvent model does not cause further changes in the reaction.

3.
J Chem Phys ; 145(20): 204708, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27908144

RESUMO

Density functional theory (DFT) at the generalised gradient approximation level is employed within the periodic electrostatic embedded cluster method (PEECM) to model the brucite (0001) surface. Three representative studies are then used to demonstrate the reliability of the PEECM for the description of the interactions of various ionic species with the layered Mg(OH)2 structure, and its performance is compared with periodic DFT, an approach known to be challenging for the adsorption of charged species. The adsorption energies of a series of s block cations, including Sr2+ and Cs+ which are known to coexist with brucite in nuclear waste storage ponds, are well described by the embedded cluster model, provided that basis sets of triple-zeta quality are employed for the adsorbates. The substitution energies of Ca2+ and Sr2+ into brucite obtained with the PEECM are very similar to periodic DFT results, and comparison of the approaches indicates that two brucite layers in the quantum mechanical part of the PEECM are sufficient to describe the substitution. Finally, a detailed comparison of the periodic and PEECM DFT approaches to the energetic and geometric properties of differently coordinated Sr[(OH)2(H2O)4] complexes on brucite shows an excellent agreement in adsorption energies, Sr-O distances, and bond critical point electron densities (obtained via the quantum theory of atoms-in-molecules), demonstrating that the PEECM can be a useful alternative to periodic DFT in these situations.

5.
Dalton Trans ; 44(25): 11572-81, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26041401

RESUMO

Density functional theory at the meta-GGA level is employed to study the microsolvation of Sr(2+) hydroxides, in order to establish likely candidate species for the interaction of nuclear fission-generated strontium with corroded Magnox fuel cladding in high pH spent nuclear fuel storage ponds. A combination of the COSMO continuum solvation model and one or two shells of explicit water molecules is employed. Inclusion of only a single explicit solvation shell is unsatisfactory; open regions are present in the strontium coordination shell which would not exist in real aqueous complexes, and many optimised structures possess unavoidable energetic instabilities. Incorporation of a second shell of explicit waters, however, yields energetically minimal structures without open regions in the first strontium coordination shell. The most stable systems with one, two or three hydroxide ions are all 6-coordinated with a distorted trigonal antiprismatic geometry, whereas systems with four OH(-) ions have a most stable coordination number of five. Transformation, via a proton transfer mechanism, from one coordination mode to another (e.g. from a system with two hydroxides bound directly to the strontium to one in which a hydroxide ion migrates into the second coordination shell) is found to be energetically facile. It is concluded that the most likely strontium-hydroxide complexes to be found in high pH aqueous solutions are mono- and dihydroxides, and that these coexist.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA