Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(2): 026406, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35089762

RESUMO

We present a complementary experimental and theoretical investigation of relaxation dynamics in the charge-density-wave (CDW) system TbTe_{3} after ultrafast optical excitation. Using time- and angle-resolved photoemission spectroscopy, we observe an unusual transient modulation of the relaxation rates of excited photocarriers. A detailed analysis of the electron self-energy based on a nonequilibrium Green's function formalism reveals that the phase space of electron-electron scattering is critically modulated by the photoinduced collective CDW excitation, providing an intuitive microscopic understanding of the observed dynamics and revealing the impact of the electronic band structure on the self-energy.

2.
Phys Rev Lett ; 125(21): 216404, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33274965

RESUMO

We performed angle-resolved photoemission spectroscopy (ARPES) of bulk 2H-WSe_{2} for different crystal orientations linked to each other by time-reversal symmetry. We introduce a new observable called time-reversal dichroism in photoelectron angular distributions (TRDAD), which quantifies the modulation of the photoemission intensity upon effective time-reversal operation. We demonstrate that the hidden orbital pseudospin texture leaves its imprint on TRDAD, due to multiple orbital interference effects in photoemission. Our experimental results are in quantitative agreement with both the tight-binding model and state-of-the-art fully relativistic calculations performed using the one-step model of photoemission. While spin-resolved ARPES probes the spin component of entangled spin-orbital texture in multiorbital systems, we unambiguously demonstrate that TRDAD reveals its orbital pseudospin texture counterpart.

3.
Phys Rev Lett ; 123(8): 086401, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31491220

RESUMO

We thoroughly examine the ground state of the triangular lattice of Pb on Si(111) using scanning tunneling microscopy and spectroscopy. We detect electronic charge order, and disentangle this contribution from the atomic configuration which we find to be 1-down-2-up, contrary to previous predictions from density functional theory. Applying an extended variational cluster approach we map out the phase diagram as a function of local and nonlocal Coulomb interactions. Comparing the experimental data with the theoretical modeling leads us to conclude that electron correlations are the driving force of the charge-ordered state in Pb/Si(111). These results resolve the discussion about the origin of the well-known 3×3 reconstruction. By exploiting the tunability of correlation strength, hopping parameters, and band filling, this material class represents a promising platform to search for exotic states of matter, in particular, for chiral topological superconductivity.

4.
Nat Commun ; 12(1): 2499, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33941788

RESUMO

The interaction of many-body systems with intense light pulses may lead to novel emergent phenomena far from equilibrium. Recent discoveries, such as the optical enhancement of the critical temperature in certain superconductors and the photo-stabilization of hidden phases, have turned this field into an important research frontier. Here, we demonstrate nonthermal charge-density-wave (CDW) order at electronic temperatures far greater than the thermodynamic transition temperature. Using time- and angle-resolved photoemission spectroscopy and time-resolved X-ray diffraction, we investigate the electronic and structural order parameters of an ultrafast photoinduced CDW-to-metal transition. Tracking the dynamical CDW recovery as a function of electronic temperature reveals a behaviour markedly different from equilibrium, which we attribute to the suppression of lattice fluctuations in the transient nonthermal phonon distribution. A complete description of the system's coherent and incoherent order-parameter dynamics is given by a time-dependent Ginzburg-Landau framework, providing access to the transient potential energy surfaces.

5.
Rev Sci Instrum ; 91(12): 123112, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33379994

RESUMO

Time-of-flight-based momentum microscopy has a growing presence in photoemission studies, as it enables parallel energy- and momentum-resolved acquisition of the full photoelectron distribution. Here, we report table-top extreme ultraviolet time- and angle-resolved photoemission spectroscopy (trARPES) featuring both a hemispherical analyzer and a momentum microscope within the same setup. We present a systematic comparison of the two detection schemes and quantify experimentally relevant parameters, including pump- and probe-induced space-charge effects, detection efficiency, photoelectron count rates, and depth of focus. We highlight the advantages and limitations of both instruments based on exemplary trARPES measurements of bulk WSe2. Our analysis demonstrates the complementary nature of the two spectrometers for time-resolved ARPES experiments. Their combination in a single experimental apparatus allows us to address a broad range of scientific questions with trARPES.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA