RESUMO
High levels of expression and activity of the 20S proteasome have been linked to many types of pathologies, including neoplasia, autoimmune disorders, neurodegenerative diseases and many more. Moreover, distinguishing between 20S proteasome catalytic subunits is neglected, although it may provide further insight into the development of pathologies. Several approaches have been developed to detect 20S proteasome activity, one of which is internally quenched fluorescent (IQF) substrates, which currently suffer from low efficiency and sensitivity. Previous reports focused on peptides including natural amino acids; therefore, in this report, we synthesized and analyzed IQF substrates with both natural and unnatural amino acids in the P1' and P2' positions to investigate their influences on selectivity toward 20S proteasome subunits. We found that elongation of the substrate by the P1' and P2' positions increased specificity in comparison to tetrapeptides. Moreover, we were able to obtain IQF substrates for the Ch-L subunit, which was characterized by higher selectivity than formerly used tetrapeptides. These findings may further contribute to the development of novel diagnostic tools for 20S proteasome-dependent disorders.
Assuntos
Peptídeos , Complexo de Endopeptidases do Proteassoma , Complexo de Endopeptidases do Proteassoma/metabolismo , Peptídeos/química , Aminoácidos/metabolismo , Proteólise , Especificidade por Substrato , Sítios de LigaçãoRESUMO
Non-muscle actins have been studied for many decades; however, the reason for the existence of both isoforms is still unclear. Here we show, for the first time, a successful inactivation of the ACTB (CRISPR clones with inactivated ACTB, CR-ACTB) and ACTG1 (CRISPR clones with inactivated ACTG1, CR-ACTG1) genes in human melanoma cells (A375) via the RNA-guided D10A mutated Cas9 nuclease gene editing [CRISPR/Cas9(D10A)] technique. This approach allowed us to evaluate how melanoma cell motility was impacted by the lack of either ß actin coded by ACTB or γ actin coded by ACTG1. First, we observed different distributions of ß and γ actin in the cells, and the absence of one actin isoform was compensated for via increased expression of the other isoform. Moreover, we noted that γ actin knockout had more severe consequences on cell migration and invasion than ß actin knockout. Next, we observed that the formation rate of bundled stress fibers in CR-ACTG1 cells was increased, but lamellipodial activity in these cells was impaired, compared to controls. Finally, we discovered that the formation rate of focal adhesions (FAs) and, subsequently, FA-dependent signaling were altered in both the CR-ACTB and CR-ACTG1 clones; however, a more detrimental effect was observed for γ actin-deficient cells. Our research shows that both non-muscle actins play distinctive roles in melanoma cells' FA formation and motility.
Assuntos
Actinas/metabolismo , Sistemas CRISPR-Cas , Adesões Focais/metabolismo , Edição de Genes/métodos , Técnicas de Inativação de Genes/métodos , Melanoma/metabolismo , Actinas/análise , Actinas/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Adesões Focais/efeitos dos fármacos , Adesões Focais/genética , Humanos , Lisofosfolipídeos/farmacologia , Melanoma/genética , Invasividade Neoplásica/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fibras de Estresse/genética , Fibras de Estresse/metabolismo , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacologiaRESUMO
Osteoarthritis (OA) is a chronic degenerative disease that leads to joint failure, pain, and disability. Gene regulation is implicated as a driver of the imbalance between the expression of catabolic and anabolic factors that eventually leads to the degeneration of osteoarthritic cartilage. In our model, knee-joint OA was induced in male Wistar rats by intra-articular sodium monoiodoacetate (MIA) injections. Whole-genome microarrays were used to analyse the alterations in gene expression during the time-course of OA development (at 2, 14, and 28 days post-injection) in rat knee joints. The identified co-expressed groups of genes were analysed for enriched regulatory mechanisms, functional classes, and cell-type-specific expression. This analysis revealed 272 regulated transcripts (ANOVA FDR < 0.1% and fold > 2). Functionally, the five major gene expression patterns (A-E) were connected to PPAR signalling and adipogenesis (in cluster A), WNT signalling (in cluster B), endochondral ossification (in cluster C), matrix metalloproteinases and the ACE/RAGE pathway (in cluster D), and the Toll-like receptor, and IL-1 signalling pathways (in cluster E). Moreover, the dynamic profiles of these transcriptional changes were assigned to cellular compartments of the knee joint. Classifying the molecular processes associated with the development of cartilage degeneration provides novel insight into the OA disease process. Our study identified groups of co-regulated genes that share functional relationships and that may play an important role in the early and intermediate stages of OA.
Assuntos
Artrite Experimental/genética , Cartilagem Articular/metabolismo , Articulação do Joelho/metabolismo , Osteoartrite/genética , Animais , Artrite Experimental/induzido quimicamente , Biomarcadores/metabolismo , Regulação da Expressão Gênica , Ácido Iodoacético , Masculino , Osteoartrite/induzido quimicamente , Ratos , Ratos Wistar , Transdução de SinaisRESUMO
Osteoarthritis (OA) is a joint disease in which cartilage degenerates as a result of mechanical and biochemical changes. The main OA symptom is chronic pain involving both peripheral and central mechanisms of nociceptive processing. Our previous studies have implicated the benefits of dual- over single-acting compounds interacting with the endocannabinoid system (ECS) in OA treatment. In the present study, we focused on the specific molecular alterations associated with pharmacological treatment. OA was induced in Wistar rats by intra-articular injection of 3 mg of monoiodoacetate (MIA). Single target compounds (URB597, an FAAH inhibitor, and SB366791, a TRPV1 antagonist) and a dual-acting compound OMDM198 (FAAH inhibitor/TRPV1 antagonist) were used in the present study. At day 21 post-MIA injection, rats were sacrificed 1 h after i.p. treatment, and changes in mRNA expression were evaluated in the lumbar spinal cord by RT-qPCR. Following MIA administration, we observed 2-4-fold increase in mRNA expression of targeted receptors (Cnr1, Cnr2, and Trpv1), endocannabinoid degradation enzymes (Faah, Ptgs2, and Alox12), and TRPV1 sensitizing kinases (Mapk3, Mapk14, Prkcg, and Prkaca). OMDM198 treatment reversed some of the MIA effects on the spinal cord towards intact levels (Alox12, Mapk14, and Prkcg). Apparent regulation of ECS and TRPV1 in response to pharmacological intervention is a strong justification for novel ECS-based multi-target drug treatment in OA.
Assuntos
Osteoartrite/etiologia , Osteoartrite/metabolismo , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Animais , Carbamatos/farmacologia , Endocanabinoides/metabolismo , Regulação da Expressão Gênica , Masculino , Osteoartrite/tratamento farmacológico , Proteólise , Ratos , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Canais de Cátion TRPV/genéticaRESUMO
There is considerable evidence to support the role of anandamide (AEA), an endogenous ligand of cannabinoid receptors, in neuropathic pain modulation. AEA also produces effects mediated by other biological targets, of which the transient receptor potential vanilloid type 1 (TRPV1) has been the most investigated. Both, inhibition of AEA breakdown by fatty acid amide hydrolase (FAAH) and blockage of TRPV1 have been shown to produce anti-nociceptive effects. Recent research suggests the usefulness of dual-action compounds, which may afford greater anti-allodynic efficacy. Therefore, in the present study, we examined the effect of N-arachidonoyl-serotonin (AA-5-HT), a blocker of FAAH and TRPV1, in a rat model of neuropathic pain after intrathecal administration. We found that treatment with AA-5-HT increased the pain threshold to mechanical and thermal stimuli, with highest effect at the dose of 500nM, which was most strongly attenuated by AM-630, CB2 antagonist, administration. The single action blockers PF-3845 (1000nM, for FAAH) and I-RTX (1nM, for TRPV1) showed lower efficacy than AA-5-HT. Moreover AA-5-HT (500nM) elevated AEA and palmitoylethanolamide (PEA) levels. Among the possible targets of these mediators, only the mRNA levels of CB2, GPR18 and GPR55, which are believed to be novel cannabinoid receptors, were upregulated in the spinal cord and/or DRG of CCI rats. It was previously reported that AA-5-HT acts in CB1 and TRPV1-dependent manner after systemic administration, but here for the first time we show that AA-5-HT action at the spinal level involves CB2, with potential contributions from GRP18 and/or GPR55 receptors.
Assuntos
Analgésicos/farmacologia , Ácidos Araquidônicos/farmacologia , Neuralgia/prevenção & controle , Nociceptividade/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Serotonina/análogos & derivados , Medula Espinal/efeitos dos fármacos , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/genética , Amidoidrolases/metabolismo , Analgésicos/administração & dosagem , Animais , Ácidos Araquidônicos/administração & dosagem , Ácidos Araquidônicos/metabolismo , Antagonistas de Receptores de Canabinoides/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Endocanabinoides/metabolismo , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Glicerídeos/metabolismo , Injeções Espinhais , Masculino , Neuralgia/genética , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Alcamidas Poli-Insaturadas/metabolismo , Ratos Wistar , Receptor CB1 de Canabinoide/efeitos dos fármacos , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/efeitos dos fármacos , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Receptores de Canabinoides/efeitos dos fármacos , Receptores de Canabinoides/genética , Receptores de Canabinoides/metabolismo , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Serotonina/administração & dosagem , Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Fatores de TempoRESUMO
Transient receptor potential vanilloid type 1 (TRPV1), classically associated with transduction of high-temperature and low-pH pain, underlies pain hypersensitivity in neuropathic pain. The molecular regulation of TRPV1 channel activity is not yet fully understood. Therefore, we investigated factors regulating sensitisation of this receptor during development of neuropathic pain in a rat model of chronic construction injury (CCI) in the dorsal root ganglia (DRG). In the rat CCI model, elevated levels of pro-inflammatory cytokines (TNFα, IL-1ß and IL-6) in DRG corresponded to development of neuropathic pain. We assessed the expression of known kinases influencing TRPV1 sensitisation at the mRNA and/or protein level. Protein kinase C ε (PKCε) showed the strongest upregulation at the mRNA and protein levels among all tested kinases. Co-expression of PKCε and TRPV1 in L5 DRG of CCI animals was high during the development of neuropathic pain. The number of neurons expressing PKCε increased throughout the experiment. We provide complex data on the expression of a variety of factors involved in TRPV1 sensitisation in a CCI model of neuropathic pain. Our study supports evidence for involvement of TRPV1 in the development of neuropathic pain, by showing increased expression of interleukins and kinases responsible for the channel sensitisation. TNFα and NGF seem to play a role in the transition from acute to neuropathic pain, while PKCε in its maintenance. Further studies might confirm their significance as novel targets for the treatment of neuropathic pain.
Assuntos
Neuralgia/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Gânglios Espinais/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Proteína Quinase C-épsilon/genética , Proteína Quinase C-épsilon/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Canais de Cátion TRPV/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Microglial activation is a polarized process divided into potentially neuroprotective phenotype M2 and neurotoxic phenotype M1, predominant during chronic neuroinflammation. Endocannabinoid system provides an attractive target to control the balance between microglial phenotypes. Anandamide as an immune modulator in the central nervous system acts via not only cannabinoid receptors (CB1 and CB2) but also other targets (e.g., GPR18/GPR55). We studied the effect of anandamide on lipopolysaccharide-induced changes in rat primary microglial cultures. Microglial activation was assessed based on nitric oxide (NO) production. Analysis of mRNA was conducted for M1 and M2 phenotype markers possibly affected by the treatment. Our results showed that lipopolysaccharide-induced NO release in microglia was significantly attenuated, with concomitant downregulation of M1 phenotypic markers, after pretreatment with anandamide. This effect was not sensitive to CB1 or GPR18/GPR55 antagonism. Administration of CB2 antagonist partially abolished the effects of anandamide on microglia. Interestingly, administration of a GPR18/GPR55 antagonist by itself suppressed NO release. In summary, we showed that the endocannabinoid system plays a crucial role in the management of neuroinflammation by dampening the activation of an M1 phenotype. This effect was primarily controlled by the CB2 receptor, although functional cross talk with GPR18/GPR55 may occur.
Assuntos
Ácidos Araquidônicos/farmacologia , Encefalite/metabolismo , Endocanabinoides/farmacologia , Fatores Imunológicos/farmacologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Alcamidas Poli-Insaturadas/farmacologia , Receptor CB2 de Canabinoide/metabolismo , Animais , Ácidos Araquidônicos/uso terapêutico , Células Cultivadas , Encefalite/induzido quimicamente , Encefalite/tratamento farmacológico , Endocanabinoides/uso terapêutico , Fatores Imunológicos/uso terapêutico , Lipopolissacarídeos , Óxido Nítrico/metabolismo , Alcamidas Poli-Insaturadas/uso terapêutico , Ratos , Ratos Wistar , Receptores de Canabinoides/metabolismo , Receptores Acoplados a Proteínas G/metabolismoRESUMO
It is widely acknowledged that the aging process is linked to the accumulation of damaged and misfolded proteins. This phenomenon is accompanied by a decrease in proteasome (c20S) activity, concomitant with an increase in immunoproteasome (i20S) activity. These changes can be attributed, in part, to the chronic neuroinflammation that occurs in brain tissues. Neuroinflammation is a complex process characterized by the activation of immune cells in the central nervous system (CNS) in response to injury, infection, and other pathological stimuli. In certain cases, this immune response becomes chronic, contributing to the pathogenesis of various neurological disorders, including chronic pain, Alzheimer's disease, Parkinson's disease, brain traumatic injury, and others. Microglia, the resident immune cells in the brain, play a crucial role in the neuroinflammatory response. Recent research has highlighted the involvement of i20S in promoting neuroinflammation, increased activity of which may lead to the presentation of self-antigens, triggering an autoimmune response against the CNS, exacerbating inflammation, and contributing to neurodegeneration. Furthermore, since i20S plays a role in breaking down accumulated proteins during inflammation within the cell body, any disruption in its activity could lead to a prolonged state of inflammation and subsequent cell death. Given the pivotal role of i20S in neuroinflammation, targeting this proteasome subtype has emerged as a potential therapeutic approach for managing neuroinflammatory diseases. This review delves into the mechanisms of neuroinflammation and microglia activation, exploring the potential of i20S inhibitors as a promising therapeutic strategy for managing neuroinflammatory disorders.
Assuntos
Microglia , Doenças Neuroinflamatórias , Complexo de Endopeptidases do Proteassoma , Microglia/metabolismo , Microglia/efeitos dos fármacos , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/imunologia , Animais , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Inflamação/metabolismo , Inflamação/imunologiaRESUMO
Osteoarthritis (OA) is one of the most common joint disorder, with pain accompanied by functional impairment, as the most pronounced clinical symptom. Currently used pharmacotherapy involves symptomatic treatment that do not always provide adequate pain relief. This may be due to concomitance of central sensitization and development of neuropathic features in OA patients. Here we performed studies in the animal model of OA to investigate of the neuropathic component. Intraarticular injection of monoiodoacetate (MIA, 1 mg) was used to induce OA in Wistar male rats. Development of pain phenotype was assessed by behavioral testing (PAM test and von Frey's test), while corresponding changes in dorsal root ganglia (DRGs L3-L5) and spinal cord (SC) gene expression were assessed by means of qRT-PCR technique. We also performed microtomography of OA-affected knee joints to correlate the level of bone degradation with observed behavioral and molecular changes. We observed gradually developing remote allodynia after MIA treatment, indicating the presence of neuropathic component. Our results showed that, among DRGs innervating knee joint, development of central sensitization is most likely due to peripheral input of stimuli through DRG L5. In SC, development of secondary hypersensitivity correlated with increased expression of TAC1 and NPY. Our studies provided molecular records on abnormal activation of pain transmission markers in DRG and SC during development of OA that are responsible for the manifestation of neuropathic features. The obtained results increase insight into molecular changes occurring in the neuronal tissue during OA development and may contribute to readdressing treatment paradigms.
Assuntos
Neuralgia , Osteoartrite , Humanos , Ratos , Animais , Masculino , Fatores Corda/metabolismo , Ratos Sprague-Dawley , Modelos Animais de Doenças , Ratos Wistar , Osteoartrite/complicações , Osteoartrite/diagnóstico por imagem , Osteoartrite/metabolismo , Neuralgia/metabolismo , Medula Espinal/metabolismo , Gânglios Espinais/metabolismoRESUMO
Objective: Osteoarthritis (OA) is common degenerative joint disease, mostly characterized by gradual cartilage breakdown. Currently there are no disease-modifying drugs available, therefore, there is an increasing need for basic research to focus on cartilage function in OA. Changes in cannabinoid receptor 2 (CB2) expression were observed in the OA-affected joints, although its action on cartilage chondrocytes remain unclear. We studied the action of dimethylbutyl-deoxy-delta-8-THC (JWH-133), selective CB2 agonist, on chondrocytes metabolism using both in vitro and in vivo studies. Design: Intraarticular (i.a.) injection of monoiodoacetate (MIA) was used to induce OA in rats. OA-related pain symptoms were assessed by pressure application measurements (PAMs). Primary human chondrocytes treated with MIA were used to investigate action of JWH-133 on chondrocytes viability, proliferation, and motility. Cannabinoid system components, inflammatory cytokines and metalloproteinases (MMPs) expression was measured on messenger RNA and protein levels in chondrocytes and animal cartilage. Results: Repeated, i.a. administration of JWH-133 showed antinociceptive potential in PAM, as well as decreased levels of MMPs, which suggests that CB2 agonism may modify degradation of cartilage. JWH-133 administration partially reduced toxicity, increased proliferation, and chondrocytes' migration. Moreover, our data suggest that CB2 agonism leads to alleviation of MMPs expression both in vitro and in vivo. Conclusions: In this study, we demonstrate modifying effect of JWH-133 local administration on cartilage metabolism and MMP13 expression that was shown to be involved in cartilage degradation. CB2 receptors' activation may be of benefit for chondrocytes' proliferation, therefore delaying disease progression. Our results propose direction of studies on OA-modifying treatment that can benefit in management of human OA.
Assuntos
Canabinoides , Cartilagem Articular , Osteoartrite , Ratos , Humanos , Animais , Cartilagem Articular/metabolismo , Metaloproteases/metabolismo , Metaloproteases/farmacologia , Metaloproteases/uso terapêutico , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Osteoartrite/metabolismo , Canabinoides/farmacologia , Canabinoides/uso terapêutico , RegeneraçãoRESUMO
Understanding the mechanisms of augmented bacterial pathogenicity in post-viral infections is the first step in the development of an effective therapy. This study assessed the effect of human coronavirus NL63 (HCoV-NL63) on the adherence of bacterial pathogens associated with respiratory tract illnesses. It was shown that HCoV-NL63 infection resulted in an increased adherence of Streptococcus pneumoniae to virus-infected cell lines and fully differentiated primary human airway epithelium cultures. The enhanced binding of bacteria correlated with an increased expression level of the platelet-activating factor receptor (PAF-R), but detailed evaluation of the bacterium-PAF-R interaction revealed a limited relevance of this process.
Assuntos
Aderência Bacteriana , Coronavirus Humano NL63/fisiologia , Células Epiteliais/microbiologia , Células Epiteliais/virologia , Infecções Respiratórias/microbiologia , Infecções Respiratórias/virologia , Streptococcus/fisiologia , Linhagem Celular , Células Cultivadas , Células Epiteliais/metabolismo , Expressão Gênica , Humanos , Glicoproteínas da Membrana de Plaquetas/genética , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Infecções Respiratórias/genética , Infecções Respiratórias/metabolismoRESUMO
We have recently found that ß-actin-like protein 2 (actbl2) forms complexes with gelsolin in human melanoma cells and can polymerize. Phylogenetic and bioinformatic analyses showed that actbl2 has a common origin with two non-muscle actins, which share a separate history from the muscle actins. The actin groups' divergence started at the beginning of vertebrate evolution, and actbl2 actins are characterized by the largest number of non-conserved amino acid substitutions of all actins. We also discovered that ACTBL2 is expressed at a very low level in several melanoma cell lines, but a small subset of cells exhibited a high ACTBL2 expression. We found that clones with knocked-out ACTBL2 (CR-ACTBL2) or overexpressing actbl2 (OE-ACTBL2) differ from control cells in the invasion, focal adhesion formation, and actin polymerization ratio, as well as in the formation of lamellipodia and stress fibers. Thus, we postulate that actbl2 is the seventh actin isoform and is essential for cell motility.
Assuntos
Movimento Celular , Adesões Focais/metabolismo , Regulação Neoplásica da Expressão Gênica , Melanoma/metabolismo , Proteínas de Neoplasias/biossíntese , Retroelementos , Linhagem Celular Tumoral , Adesões Focais/genética , Adesões Focais/patologia , Humanos , Melanoma/genética , Melanoma/patologia , Invasividade Neoplásica , Proteínas de Neoplasias/genéticaRESUMO
Thymosin ß4 (Tß4) is a small, 44-amino acid polypeptide. It has been implicated in multiple processes, including cell movement, angiogenesis, and stemness. Previously, we reported that melanoma cell lines differ in Tß4 levels. Studies on stable clones with silenced TMSB4X expression showed that Tß4 impacted adhesion and epithelial-mesenchymal transition progression. Here, we show that the cells with silenced TMSB4X expression exhibited altered actin cytoskeleton's organization and subcellular relocalization of two intermediate filament proteins: Nestin and Vimentin. The rearrangement of the cell cytoskeleton resulted in changes in the cells' topology, height, and stiffness defined by Young's modulus. Simultaneously, only for some A375 clones with a lowered Tß4 level, we observed a decreased ability to initiate colony formation in soft agar, tumor formation in vivo, and alterations in Nanog's expression level transcription factor regulating stemness. Thus, we show for the first time that in A375 cells, biomechanical properties are not directly coupled to stemness features, and this cell line is phenotypically heterogeneous.
Assuntos
Inativação Gênica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Timosina/metabolismo , Citoesqueleto de Actina/metabolismo , Biomarcadores Tumorais/metabolismo , Fenômenos Biomecânicos , Carcinogênese/patologia , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Forma Celular , Humanos , Filamentos Intermediários/metabolismo , Melanoma/patologia , Modelos Biológicos , Nestina/metabolismo , Vimentina/metabolismoRESUMO
Osteoarthritis (OA) is the most common disease of joints, which are complex organs where cartilage, bone and synovium cooperate to allow a range of movements. During progression of the disease, the function of all three main components is jeopardized. Nevertheless, the involvement of each tissue in OA development is still not established and is the topic of the present review. The OA therapies available are symptomatic, largely targeting pain management rather than disease progression. The strong need to develop a treatment for cartilage degeneration, bone deformation and synovial inflammation has led to research on the involvement of the endocannabinoid system in the development of OA. The current review discusses the research on this topic to date and notes the advantages of exploiting endocannabinoid system modulation for cartilage, bone and synovium homeostasis, which could prevent the further progression of OA. LINKED ARTICLES: This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Assuntos
Canabinoides/uso terapêutico , Endocanabinoides/metabolismo , Articulações/efeitos dos fármacos , Osteoartrite/tratamento farmacológico , Animais , Humanos , Articulações/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Receptores de Canabinoides/metabolismo , Resultado do TratamentoRESUMO
Thymosin ß4 (Tß4), a multifunctional 44-amino acid polypeptide and a member of actin-binding proteins (ABPs), plays an important role in developmental processes and wound healing. In recent years an increasing number of data has been published suggesting Tß4's involvement in tumorigenesis. However, Tß4's role in melanoma tumor development still remains to be elucidated. In our study we demonstrate that Tß4 is crucial for melanoma adhesion and invasion. For the purpose of our research we tested melanoma cell lines differing in invasive potential. Moreover, we applied shRNAs to silence TMSB4X (gene encoding Tß4) expression in a cell line with high TMSB4X expression. We found out that Tß4 is not only a component of focal adhesions (FAs) and interacts with several FAs components but also regulates FAs formation. We demonstrate that Tß4 level has an impact on FAs' number and morphology. Moreover, manipulation with TMSB4X expression resulted in changes in cells' motility on non-coated and MatrigelTM (resembling basement membrane composition)-coated surfaces and drastically decreased invasion abilities of the cells. Additionally, a correlation between Tß4 expression level and exhibition of mesenchymal-like [epithelial-mesenchymal transition (EMT)] features was discovered. Cells with lowered TMSB4X expression were less EMT-progressed than control cells. Summarizing, obtained results show that Tß4 by regulating melanoma cells' adhesion has an impact on motility features and EMT. Our study not only contributes to a better understanding of the processes underlying melanoma cells' capacity to create metastases but also highlights Tß4 as a potential target for melanoma management therapy.
RESUMO
Biomarkers of osteoarthritis (OA) that can accurately diagnose the disease at the earliest stage would significantly support efforts to develop treatments for prevention and early intervention. We have sought to determine the time course of alterations in peripheral blood gene expression profile associated with the development of OA. Blood samples were collected from a tail vein of individual rats with monosodium iodoacetate- (MIA-) induced OA (2, 14, 21, and 28 days after the treatment). We used whole-genome microarrays to reveal OA-related transcriptional alterations of 72 transcripts. Three main groups of coexpressed genes revealed diverse time-dependent profiles of up- and downregulation. Functional links that connect expression of the gradually downregulated genes to the G13 signaling pathway were indicated. The mRNA abundance levels of the identified transcripts were further analyzed in publicly available gene expression dataset obtained from a GARP study cohort of OA patients. We revealed three-gene signature differentially expressed in both rat and human blood (TNK2, KCTD2, and WDR37). The alterations in expression of the selected transcripts in peripheral blood samples of the patients indicate heterogeneity of the OA profiles potentially related to disease progress and severity of clinical symptoms. Our study identifies several potential stage-specific biomarkers of OA progression.
RESUMO
Matrix metalloproteinases (MMPs) are considered important in articular cartilage breakdown during osteoarthritis (OA). Similarly, the endocannabinoid system (ECS) is implicated in joint function and modulation of nociceptive processing. Functional interplay between ECS and MMPs has been recently indicated. Here, we tested if changes in the expression of selected MMPs and major ECS elements temporally correlate with the intensity of OA-related pain. Knee OA was induced in male Wistar rats by intra-articular sodium monoiodoacetate injection. OA-like pain behavior was tested using the dynamic weight bearing. Joint tissue samples at different time points after OA induction were subjected to gene (quantitative polymerase chain reaction) and protein (Western blot) expression analyses. Monoiodoacetate-induced nocifensive responses in rats showed a biphasic progression pattern. The alterations in expression of selected MMPs elegantly corresponded to the two-stage development of OA pain. The most substantial changes in the expression of the ECS system were revealed at a later stage of OA progression. Alterations within ECS are involved in the process of adaptation to persistent painful stimuli. The accumulation of MMPs in osteoarthritic cartilage may have a role in the biphasic progression of OA-related pain. Temporal association of changes in ECS and MMPs expression shows a potential therapeutic approach that utilizes the concept of combining indirect ECS-mediated MMP inhibition and ECS modulation of pain transduction.
RESUMO
Women suffer chronic pain more frequently than men. It is not clear whether this is due to differences in higher level cognitive processes or basic nociceptive responses. In this study we used a mouse model of neuropathic pain to dissociate these factors. We performed RNA-seq on purified peripheral afferent neurons, but found no striking differences in gene expression between male and female mice, neither before nor after nerve injury. Similarly, spinal cord immune responses between the sexes appeared to be indistinguishable when studied by flow cytometry or qRT-PCR. Differences emerged only upon studying peripheral immune cell infiltration into the dorsal root ganglion, suggesting that adaptive immune responses in neuropathic pain could be sexually dimorphic.
Assuntos
Imunidade , Neuralgia/imunologia , Animais , Biomarcadores , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Perfilação da Expressão Gênica , Masculino , Camundongos , Microglia/imunologia , Microglia/metabolismo , Neuralgia/genética , Neuralgia/metabolismo , Células Receptoras Sensoriais/metabolismo , Fatores Sexuais , Medula Espinal/imunologia , Medula Espinal/metabolismo , Medula Espinal/patologiaRESUMO
Compared with acute pain that arises suddenly in response to a specific injury and is usually treatable, chronic pain persists over time, and is often resistant to medical treatment. Because of the heterogeneity of chronic pain origins, satisfactory therapies for its treatment are lacking, leading to an urgent need for the development of new treatments. The leading approach in drug design is selective compounds, though they are often less effective and require chronic dosing with many side effects. Herein, we review novel approaches to drug design for the treatment of chronic pain represented by dual-acting compounds, which operate at more than one biological target. A number of studies suggest the involvement of the cannabinoid and vanilloid receptors in pain. Interestingly cannabinoid system is in interrelation with other systems that comprise lipid mediators: prostaglandins, produced by COX enzyme. Therefore, in the present review, we summarize the role of dual-acting molecules (FAAH/TRPV1 and FAAH/COX-2 inhibitors) that interact with endocannabinoid and endovanillinoid systems and act as analgesics by elevating the endogenously produced endocannabinoids and dampening the production of pro-inflammatory prostaglandins. The plasticity of the endocannabinoid system (ECS) and the ability of a single chemical entity to exert an activity on two receptor systems has been developed and extensively investigated. Here, we review up-to-date pharmacological studies on compounds interacting with FAAH enzyme together with TRPV1 receptor or COX-2 enzyme respectively. Multi-target pharmacological intervention for treating pain may lead to the development of original and efficient treatments.
RESUMO
The pharmacological inhibition of anandamide (AEA) hydrolysis by fatty acid amide hydrolase (FAAH) attenuates pain in animal models of osteoarthritis (OA) but has failed in clinical trials. This may have occurred because AEA also activates transient receptor potential vanilloid type 1 (TRPV1), which contributes to pain development. Therefore, we investigated the effectiveness of the dual FAAH-TRPV1 blocker OMDM-198 in an MIA-model of osteoarthritic pain. We first investigated the MIA-induced model of OA by (1) characterizing the pain phenotype and degenerative changes within the joint using X-ray microtomography and (2) evaluating nerve injury and inflammation marker (ATF-3 and IL-6) expression in the lumbar dorsal root ganglia of osteoarthritic rats and differences in gene and protein expression of the cannabinoid CB1 receptors FAAH and TRPV1. Furthermore, we compared OMDM-198 with compounds acting exclusively on FAAH or TRPV1. Osteoarthritis was accompanied by the fragmentation of bone microstructure and destroyed cartilage. An increase of the mRNA levels of ATF3 and IL-6 and an upregulation of AEA receptors and FAAH in the dorsal root ganglia were observed. OMDM-198 showed antihyperalgesic effects in the OA model, which were comparable with those of a selective TRPV1 antagonist, SB-366,791, and a selective FAAH inhibitor, URB-597. The effect of OMDM-198 was attenuated by the CB1 receptor antagonist, AM-251, and by the nonpungent TRPV1 agonist, olvanil, suggesting its action as an "indirect" CB1 agonist and TRPV1 antagonist. These results suggest an innovative strategy for the treatment of OA, which may yield more satisfactory results than those obtained so far with selective FAAH inhibitors in human OA.