Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 131(4): 1187-1199, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34382838

RESUMO

Effects of lifelong physical activity on tendon function have been investigated in cross-sectional studies, but these are at risk of "survivorship" bias. Here, we investigate whether lifelong side-specific loading is associated with greater cross-sectional area (CSA), mechanical properties, cell density (DNA content), and collagen cross-link composition of the male human patellar tendon (PT), in vivo. Nine seniors and six young male lifelong elite badminton players and fencers were included. CSA of the PT obtained by 3-tesla MRI and ultrasonography-based bilateral PT mechanics were assessed. Collagen fibril characteristics, enzymatic cross links, nonenzymatic glycation (autofluorescence), collagen, and DNA content were measured biochemically in PT biopsies. The elite athletes had a ≥15% side-to-side difference in maximal knee extensor strength, reflecting chronic unilateral sport-specific loading patterns. The PT CSA was greater on the lead extremity compared with the nonlead extremity (17%, P = 0.0001). Furthermore, greater tendon stiffness (18%, P = 0.0404) together with lower tendon stress (22%, P = 0.0005) and tendon strain (18%, P = 0.0433) were observed on the lead extremity. No effects were demonstrated from side-to-side for glycation, enzymatic cross link, collagen, and DNA content (50%, P = 0.1160). Moreover, tendon fibril density was 87 ± 28 fibrils/µm2 on the lead extremity and 68 ± 26 fibrils/µm2 on the nonlead extremity (28%, P = 0.0544). Tendon fibril diameter was 86 ± 14 nm on the lead extremity and 94 ± 14 nm on the nonlead extremity (-9%, P = 0.1076). These novel data suggest that lifelong side-specific loading in males yields greater patellar tendon size and stiffness possibly with concomitant greater fibril density but without changes of collagen cross-link composition.NEW & NOTEWORTHY The present data demonstrate that lifelong side-specific loading yields greater patellar tendon structure on the lead extremity without affecting glycation that is associated with aging. These novel data suggest that lifelong side-specific habitual loading induce structural alterations that may serve to improve the mechanical properties of the tendon.


Assuntos
Ligamento Patelar , Atletas , Fenômenos Biomecânicos , Exercício Físico , Humanos , Imageamento por Ressonância Magnética , Masculino , Ligamento Patelar/diagnóstico por imagem , Ultrassonografia
2.
Exp Gerontol ; 92: 96-105, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28363433

RESUMO

Age-related loss of muscle mass and function represents personal and socioeconomic challenges. The purpose of this study was to determine the adaptation of skeletal musculature in very old individuals (83+ years) performing 12weeks of heavy resistance training (3×/week) (HRT) compared to a non-training control group (CON). Both groups received similar protein supplementations. We studied 26 participants (86.9±3.2 (SD) (83-94, range) years old) per-protocol. Quadriceps cross-sectional area (CSA) differed between groups at post-test (P<0.05) and increased 1.5±0.7cm2 (3.4%) (P<0.05) in HRT only. The increase in CSA is correlated inversely with the baseline level of CSA (R2=0.43, P<0.02). Thigh muscle isometric strength, isokinetic peak torque and power increased significantly only in HRT by 10-15%, whereas knee extension one-repetition maximum (1 RM) improved by 91%. Physical functional tests, muscle fiber type distribution and size did not differ significantly between groups. We conclude that in protein supplemented very old individuals, heavy resistance training can increase muscle mass and strength, and that the relative improvement in mass is more pronounced when initial muscle mass is low.


Assuntos
Envelhecimento/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Força Muscular/fisiologia , Treinamento Resistido/métodos , Adaptação Fisiológica , Idoso de 80 Anos ou mais , Pressão Sanguínea , Dinamarca , Feminino , Humanos , Modelos Lineares , Masculino , Tamanho do Órgão , Músculo Quadríceps/fisiologia , Resultado do Tratamento
3.
J Appl Physiol (1985) ; 116(1): 42-6, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24265284

RESUMO

Insulin-like growth factor-I (IGF-I) is known to be an anabolic factor in tendon, and the systemic levels are reduced with aging. However, it is uncertain how tendon fibroblasts are involved in tendon aging and how aging cells respond to IGF-I. The purpose of this study was to investigate the in vivo IGF-I stimulation of tendon protein synthesis in elderly compared with young men. We injected IGF-I in the patellar tendons of young (n = 11, 20-30 yr of age) and old (n = 11, 66-75 yr of age) men, and the acute fractional synthesis rate (FSR) of tendon protein was measured with the stable isotope technique and compared with the contralateral side (injected with saline as control). We found that tendons injected with IGF-I had significantly higher protein FSR compared with controls (old group: 0.018 ± 0.015 vs. 0.008 ± 0.008, young group: 0.016 ± 0.009 vs. 0.009 ± 0.006%/h, mean ± SE, P < 0.01). This increase in protein synthesis was seen in both young and old men, with no differences between age groups. The old group had markedly lower serum IGF-I levels compared with young (165 ± 17 vs. 281 ± 27 ng/ml, P < 0.01). In conclusion, local IGF-I stimulated tendon protein synthesis in both young and old men, despite lower systemic IGF-I levels in the old group. This could indicate that the changed phenotype in aging tendon is not caused by decreased fibroblast function.


Assuntos
Envelhecimento/metabolismo , Envelhecimento/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Ligamento Patelar/metabolismo , Ligamento Patelar/fisiologia , Biossíntese de Proteínas/fisiologia , Adulto , Idoso , Fibroblastos/metabolismo , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA