Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Circulation ; 147(12): 956-972, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36484244

RESUMO

BACKGROUND: Placental heart development and embryonic heart development occur in parallel, and these organs have been proposed to exert reciprocal regulation during gestation. Poor placentation has been associated with congenital heart disease, an important cause of infant mortality. However, the mechanisms by which altered placental development can lead to congenital heart disease remain unresolved. METHODS: In this study, we use an in vivo neutrophil-driven placental inflammation model through antibody depletion of maternal circulating neutrophils at key stages during time-mated murine pregnancy: embryonic days 4.5 and 7.5. Pregnant mice were culled at embryonic day 14.5 to assess placental and embryonic heart development. A combination of flow cytometry, histology, and bulk RNA sequencing was used to assess placental immune cell composition and tissue architecture. We also used flow cytometry and single-cell sequencing to assess embryonic cardiac immune cells at embryonic day 14.5 and histology and gene analyses to investigate embryonic heart structure and development. In some cases, offspring were culled at postnatal days 5 and 28 to assess any postnatal cardiac changes in immune cells, structure, and cardiac function, as measured by echocardiography. RESULTS: In the present study, we show that neutrophil-driven placental inflammation leads to inadequate placental development and loss of barrier function. Consequently, placental inflammatory monocytes of maternal origin become capable of migration to the embryonic heart and alter the normal composition of resident cardiac macrophages and cardiac tissue structure. This cardiac impairment continues into postnatal life, hindering normal tissue architecture and function. Last, we show that tempering placental inflammation can prevent this fetal cardiac defect and is sufficient to promote normal cardiac function in postnatal life. CONCLUSIONS: Taken together, these observations provide a mechanistic paradigm whereby neutrophil-driven inflammation in pregnancy can preclude normal embryonic heart development as a direct consequence of poor placental development, which has major implications on cardiac function into adult life.


Assuntos
Cardiopatias Congênitas , Placenta , Gravidez , Feminino , Camundongos , Animais , Placenta/patologia , Placentação , Feto , Inflamação/patologia
2.
PLoS Biol ; 19(11): e3001421, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34752446

RESUMO

The open sharing of genomic data provides an incredibly rich resource for the study of bacterial evolution and function and even anthropogenic activities such as the widespread use of antimicrobials. However, these data consist of genomes assembled with different tools and levels of quality checking, and of large volumes of completely unprocessed raw sequence data. In both cases, considerable computational effort is required before biological questions can be addressed. Here, we assembled and characterised 661,405 bacterial genomes retrieved from the European Nucleotide Archive (ENA) in November of 2018 using a uniform standardised approach. Of these, 311,006 did not previously have an assembly. We produced a searchable COmpact Bit-sliced Signature (COBS) index, facilitating the easy interrogation of the entire dataset for a specific sequence (e.g., gene, mutation, or plasmid). Additional MinHash and pp-sketch indices support genome-wide comparisons and estimations of genomic distance. Combined, this resource will allow data to be easily subset and searched, phylogenetic relationships between genomes to be quickly elucidated, and hypotheses rapidly generated and tested. We believe that this combination of uniform processing and variety of search/filter functionalities will make this a resource of very wide utility. In terms of diversity within the data, a breakdown of the 639,981 high-quality genomes emphasised the uneven species composition of the ENA/public databases, with just 20 of the total 2,336 species making up 90% of the genomes. The overrepresented species tend to be acute/common human pathogens, aligning with research priorities at different levels from individual interests to funding bodies and national and global public health agencies.


Assuntos
Bactérias/genética , Biodiversidade , DNA Bacteriano/genética , Curadoria de Dados , Sequência de Bases , Farmacorresistência Bacteriana/genética , Especificidade da Espécie
3.
Adv Exp Med Biol ; 1019: 135-154, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29116633

RESUMO

The Mycobacterium tuberculosis complex (MTBC) is composed of several highly genetically related species that can be broadly classified into those that are human-host adapted and those that possess the ability to propagate and transmit in a variety of wild and domesticated animals. Since the initial description of the bovine tubercle bacillus, now known as Mycobacterium bovis, by Theobald Smith in the late 1800's, isolates originating from a wide range of animal hosts have been identified and characterized as M. microti, M. pinnipedii, the Dassie bacillus, M. mungi, M. caprae, M. orygis and M. suricattae. This chapter outlines the events resulting in the identification of each of these animal-adapted species, their close genetic relationships, and how genome-based phylogenetic analyses of species-specific variation amongst MTBC members is beginning to unravel the events that resulted in the evolution of the MTBC and the observed host tropism between the human- and animal-adapted member species.


Assuntos
Animais Domésticos/microbiologia , Animais Selvagens/microbiologia , Genoma Bacteriano , Infecções por Mycobacterium/epidemiologia , Mycobacterium/classificação , Filogenia , Animais , Caniformia/microbiologia , Bovinos , Marcadores Genéticos , Cabras/microbiologia , Especificidade de Hospedeiro , Humanos , Mycobacterium/genética , Infecções por Mycobacterium/microbiologia , Infecções por Mycobacterium/transmissão , Mycobacterium bovis/classificação , Mycobacterium bovis/genética , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Roedores/microbiologia , Especificidade da Espécie
4.
Lancet Microbe ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38851206

RESUMO

BACKGROUND: The antibiotic bedaquiline is a key component of new WHO regimens for drug-resistant tuberculosis; however, predicting bedaquiline resistance from bacterial genotypes remains challenging. We aimed to understand the genetic mechanisms of bedaquiline resistance by analysing Mycobacterium tuberculosis isolates from South Africa. METHODS: For this genomic analysis, we conducted whole-genome sequencing of Mycobacterium tuberculosis samples collected at two referral laboratories in Cape Town and Johannesburg, covering regions of South Africa with a high prevalence of tuberculosis. We used the tool ARIBA to measure the status of predefined genes that are associated with bedaquiline resistance. To produce a broad genetic landscape of M tuberculosis in South Africa, we extended our analysis to include all publicly available isolates from the European Nucleotide Archive, including isolates obtained by the CRyPTIC consortium, for which minimum inhibitory concentrations of bedaquiline were available. FINDINGS: Between Jan 10, 2019, and July, 22, 2020, we sequenced 505 M tuberculosis isolates from 461 patients. Of the 64 isolates with mutations within the mmpR5 regulatory gene, we found 53 (83%) had independent acquisition of 31 different mutations, with a particular enrichment of truncated MmpR5 in bedaquiline-resistant isolates resulting from either frameshift mutations or the introduction of an insertion element. Truncation occurred across three M tuberculosis lineages, and were present in 66% of bedaquiline-resistant isolates. Although the distributions overlapped, the median minimum inhibitory concentration of bedaquiline was 0·25 mg/L (IQR 0·12-0·25) in mmpR5-disrupted isolates, compared with 0·06 mg/L (0·03-0·06) in wild-type M tuberculosis. INTERPRETATION: Reduction in the susceptibility of M tuberculosis to bedaquiline has evolved repeatedly across the phylogeny. In our data, we see no evidence that this reduction has led to the spread of a successful strain in South Africa. Binary phenotyping based on the bedaquiline breakpoint might be inappropriate to monitor resistance to this drug. We recommend the use of minimum inhibitory concentrations in addition to MmpR5 truncation screening to identify moderate increases in resistance to bedaquiline. FUNDING: US Centers for Disease Control and Prevention.

5.
Front Immunol ; 14: 1209490, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457690

RESUMO

Objectives: The disease-modifying anti-rheumatic drug methotrexate (MTX) is recognized to reduce cardiovascular risk in patients with systemic inflammatory diseases. However, the molecular basis for these cardioprotective effects remains incompletely understood. This study evaluated the actions of low-dose MTX on the vascular endothelium. Methods: Human endothelial cells (EC) were studied under in vitro conditions relevant to inflammatory arthritis. These included culture in a pro-inflammatory microenvironment and exposure to fluid shear stress (FSS) using a parallel plate model. Respectively treated cells were analyzed by RNA sequencing and quantitative real-time PCR for gene expression, by immunoblotting for protein expression, by phosphokinase activity arrays, by flow cytometry for cell cycle analyses and by mass spectrometry to assess folate metabolite levels. Results: In static conditions, MTX was efficiently taken up by EC and caused cell cycle arrest concurrent with modulation of cell signaling pathways. These responses were reversed by folinic acid (FA), suggesting that OCM is a predominant target of MTX. Under FSS, MTX did not affect cell proliferation or pro-inflammatory gene expression. Exposure to FSS downregulated endothelial one carbon metabolism (OCM) as evidenced by decreased expression of key OCM genes and metabolites. Conclusion: We found that FSS significantly downregulated OCM and thereby rendered EC less susceptible to the effects of MTX treatment. The impact of shear stress on OCM suggested that MTX does not directly modulate endothelial function. The cardioprotective actions of MTX likely reflect direct actions on inflammatory cells and indirect benefit on the vascular endothelium.


Assuntos
Antirreumáticos , Metotrexato , Humanos , Metotrexato/uso terapêutico , Células Endoteliais , Antirreumáticos/efeitos adversos , Ácido Fólico , Carbono
6.
Lancet Microbe ; 4(5): e358-e368, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37003285

RESUMO

BACKGROUND: Bedaquiline is a core drug for the treatment of multidrug-resistant tuberculosis; however, the understanding of resistance mechanisms is poor, which is hampering rapid molecular diagnostics. Some bedaquiline-resistant mutants are also cross-resistant to clofazimine. To decipher bedaquiline and clofazimine resistance determinants, we combined experimental evolution, protein modelling, genome sequencing, and phenotypic data. METHODS: For this in-vitro and in-silico data analysis, we used a novel in-vitro evolutionary model using subinhibitory drug concentrations to select bedaquiline-resistant and clofazimine-resistant mutants. We determined bedaquiline and clofazimine minimum inhibitory concentrations and did Illumina and PacBio sequencing to characterise selected mutants and establish a mutation catalogue. This catalogue also includes phenotypic and genotypic data of a global collection of more than 14 000 clinical Mycobacterium tuberculosis complex isolates, and publicly available data. We investigated variants implicated in bedaquiline resistance by protein modelling and dynamic simulations. FINDINGS: We discerned 265 genomic variants implicated in bedaquiline resistance, with 250 (94%) variants affecting the transcriptional repressor (Rv0678) of the MmpS5-MmpL5 efflux system. We identified 40 new variants in vitro, and a new bedaquiline resistance mechanism caused by a large-scale genomic rearrangement. Additionally, we identified in vitro 15 (7%) of 208 mutations found in clinical bedaquiline-resistant isolates. From our in-vitro work, we detected 14 (16%) of 88 mutations so far identified as being associated with clofazimine resistance and also seen in clinically resistant strains, and catalogued 35 new mutations. Structural modelling of Rv0678 showed four major mechanisms of bedaquiline resistance: impaired DNA binding, reduction in protein stability, disruption of protein dimerisation, and alteration in affinity for its fatty acid ligand. INTERPRETATION: Our findings advance the understanding of drug resistance mechanisms in M tuberculosis complex strains. We have established an extended mutation catalogue, comprising variants implicated in resistance and susceptibility to bedaquiline and clofazimine. Our data emphasise that genotypic testing can delineate clinical isolates with borderline phenotypes, which is essential for the design of effective treatments. FUNDING: Leibniz ScienceCampus Evolutionary Medicine of the Lung, Deutsche Forschungsgemeinschaft, Research Training Group 2501 TransEvo, Rhodes Trust, Stanford University Medical Scientist Training Program, National Institute for Health and Care Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Bill & Melinda Gates Foundation, Wellcome Trust, and Marie Sklodowska-Curie Actions.


Assuntos
Clofazimina , Mycobacterium tuberculosis , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Diarilquinolinas/farmacologia , Diarilquinolinas/uso terapêutico
7.
Genome Biol ; 23(1): 147, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35791022

RESUMO

There are many short-read variant-calling tools, with different strengths and weaknesses. We present a tool, Minos, which combines outputs from arbitrary variant callers, increasing recall without loss of precision. We benchmark on 62 samples from three bacterial species and an outbreak of 385 Mycobacterium tuberculosis samples. Minos also enables joint genotyping; we demonstrate on a large (N=13k) M. tuberculosis cohort, building a map of non-synonymous SNPs and indels in a region where all such variants are assumed to cause rifampicin resistance. We quantify the correlation with phenotypic resistance and then replicate in a second cohort (N=10k).


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Mycobacterium tuberculosis , Genoma Bacteriano , Genótipo , Humanos , Mutação INDEL , Mycobacterium tuberculosis/genética , Polimorfismo de Nucleotídeo Único
8.
Genome Biol ; 22(1): 267, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521456

RESUMO

We present pandora, a novel pan-genome graph structure and algorithms for identifying variants across the full bacterial pan-genome. As much bacterial adaptability hinges on the accessory genome, methods which analyze SNPs in just the core genome have unsatisfactory limitations. Pandora approximates a sequenced genome as a recombinant of references, detects novel variation and pan-genotypes multiple samples. Using a reference graph of 578 Escherichia coli genomes, we compare 20 diverse isolates. Pandora recovers more rare SNPs than single-reference-based tools, is significantly better than picking the closest RefSeq reference, and provides a stable framework for analyzing diverse samples without reference bias.


Assuntos
Genoma Bacteriano , Genômica/métodos , Software , Algoritmos , Escherichia coli/genética , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento por Nanoporos , Nucleotídeos , Alinhamento de Sequência , Análise de Sequência de DNA
9.
Wellcome Open Res ; 4: 191, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32055708

RESUMO

Two billion people are infected with Mycobacterium tuberculosis, leading to 10 million new cases of active tuberculosis and 1.5 million deaths annually. Universal access to drug susceptibility testing (DST) has become a World Health Organization priority. We previously developed a software tool, Mykrobe predictor, which provided offline species identification and drug resistance predictions for M. tuberculosis from whole genome sequencing (WGS) data. Performance was insufficient to support the use of WGS as an alternative to conventional phenotype-based DST, due to mutation catalogue limitations.  Here we present a new tool, Mykrobe, which provides the same functionality based on a new software implementation. Improvements include i) an updated mutation catalogue giving greater sensitivity to detect pyrazinamide resistance, ii) support for user-defined resistance catalogues, iii) improved identification of non-tuberculous mycobacterial species, and iv) an updated statistical model for Oxford Nanopore Technologies sequencing data. Mykrobe is released under MIT license at https://github.com/mykrobe-tools/mykrobe. We incorporate mutation catalogues from the CRyPTIC consortium et al. (2018) and from Walker et al. (2015), and make improvements based on performance on an initial set of 3206 and an independent set of 5845 M. tuberculosis Illumina sequences. To give estimates of error rates, we use a prospectively collected dataset of 4362 M. tuberculosis isolates. Using culture based DST as the reference, we estimate Mykrobe to be 100%, 95%, 82%, 99% sensitive and 99%, 100%, 99%, 99% specific for rifampicin, isoniazid, pyrazinamide and ethambutol resistance prediction respectively. We benchmark against four other tools on 10207 (=5845+4362) samples, and also show that Mykrobe gives concordant results with nanopore data.  We measure the ability of Mykrobe-based DST to guide personalized therapeutic regimen design in the context of complex drug susceptibility profiles, showing 94% concordance of implied regimen with that driven by phenotypic DST, higher than all other benchmarked tools.

10.
Sci Rep ; 8(1): 894, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343690

RESUMO

The Mycobacterium tuberculosis complex (MTBC) is the collective term given to the group of bacteria that cause tuberculosis (TB) in mammals. It has been reported that M. tuberculosis H37Rv, a standard reference MTBC strain, is attenuated in cattle compared to Mycobacterium bovis. However, as M. tuberculosis H37Rv was isolated in the early 1930s, and genetic variants are known to exist, we sought to revisit this question of attenuation of M. tuberculosis for cattle by performing a bovine experimental infection with a recent M. tuberculosis isolate. Here we report infection of cattle using M. bovis AF2122/97, M. tuberculosis H37Rv, and M. tuberculosis BTB1558, the latter isolated in 2008 during a TB surveillance project in Ethiopian cattle. We show that both M. tuberculosis strains caused reduced gross pathology and histopathology in cattle compared to M. bovis. Using M. tuberculosis H37Rv and M. bovis AF2122/97 as the extremes in terms of infection outcome, we used RNA-Seq analysis to explore differences in the peripheral response to infection as a route to identify biomarkers of progressive disease in contrast to a more quiescent, latent infection. Our work shows the attenuation of M. tuberculosis strains for cattle, and emphasizes the potential of the bovine model as a 'One Health' approach to inform human TB biomarker development and post-exposure vaccine development.


Assuntos
Bacillus/imunologia , Mycobacterium bovis/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose Bovina/imunologia , Tuberculose/imunologia , Animais , Biomarcadores/metabolismo , Bovinos , Feminino , Humanos , Tuberculose/metabolismo , Tuberculose/microbiologia , Tuberculose Bovina/metabolismo , Tuberculose Bovina/microbiologia
11.
Microb Genom ; 4(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29557774

RESUMO

Members of the Mycobacterium tuberculosis complex (MTBC) are the causative agents of tuberculosis in a range of mammals, including humans. A key feature of MTBC pathogens is their high degree of genetic identity yet distinct host tropism. Notably, while Mycobacterium bovis is highly virulent and pathogenic for cattle, the human pathogen M. tuberculosis is attenuated in cattle. Previous research also suggests that host preference amongst MTBC members has a basis in host innate immune responses. To explore MTBC host tropism, we present in-depth profiling of the MTBC reference strains M. bovis AF2122/97 and M. tuberculosis H37Rv at both the global transcriptional and the translational level via RNA-sequencing and SWATH MS. Furthermore, a bovine alveolar macrophage infection time course model was used to investigate the shared and divergent host transcriptomic response to infection with M. tuberculosis H37Rv or M. bovis AF2122/97. Significant differential expression of virulence-associated pathways between the two bacilli was revealed, including the ESX-1 secretion system. A divergent transcriptional response was observed between M. tuberculosis H37Rv and M. bovis AF2122/97 infection of bovine alveolar macrophages, in particular cytosolic DNA-sensing pathways at 48 h post-infection, and highlights a distinct engagement of M. bovis with the bovine innate immune system. The work presented here therefore provides a basis for the identification of host innate immune mechanisms subverted by virulent host-adapted mycobacteria to promote their survival during the early stages of infection.


Assuntos
Imunidade Inata , Macrófagos Alveolares , Mycobacterium bovis , Mycobacterium tuberculosis , Transcriptoma , Tuberculose Bovina , Tuberculose Pulmonar , Animais , Bovinos , Humanos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiologia , Mycobacterium bovis/genética , Mycobacterium bovis/imunologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/imunologia , Proteômica , Tuberculose Bovina/genética , Tuberculose Bovina/imunologia , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia
12.
Genome Announc ; 5(14)2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28385856

RESUMO

We report here an update to the reference genome sequence of the bovine tuberculosis bacillus Mycobacterium bovis AF2122/97, generated using an integrative multiomics approach. The update includes 42 new coding sequences (CDSs), 14 modified annotations, 26 single-nucleotide polymorphism (SNP) corrections, and disclosure that the RD900 locus, previously described as absent from the genome, is in fact present.

13.
Trends Microbiol ; 24(10): 771-772, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27593675

RESUMO

In new research on Mycobacterium tuberculosis, the causative agent of tuberculosis, Warrier and colleagues have discovered a novel mode of bacterial drug resistance, namely antibiotic inactivation via N-methylation.


Assuntos
Antituberculosos , Farmacorresistência Bacteriana/efeitos dos fármacos , Metilação , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose
14.
Microb Genom ; 2(8): e000071, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-28348866

RESUMO

The discovery of novel antigens is an essential requirement in devising new diagnostics or vaccines for use in control programmes against human tuberculosis (TB) and bovine tuberculosis (bTB). Identification of potential epitopes recognised by CD4+ T cells requires prediction of peptide binding to MHC class-II, an obligatory prerequisite for T cell recognition. To comprehensively prioritise potential MHC-II-binding epitopes from Mycobacterium bovis, the agent of bTB and zoonotic TB in humans, we integrated three binding prediction methods with the M. bovisproteome using a subset of human HLA alleles to approximate the binding of epitope-containing peptides to the bovine MHC class II molecule BoLA-DRB3. Two parallel strategies were then applied to filter the resulting set of binders: identification of the top-scoring binders or clusters of binders. Our approach was tested experimentally by assessing the capacity of predicted promiscuous peptides to drive interferon-γ secretion from T cells of M. bovis infected cattle. Thus, 376 20-mer peptides, were synthesised (270 predicted epitopes, 94 random peptides with low predictive scores and 12 positive controls of known epitopes). The results of this validation demonstrated significant enrichment (>24 %) of promiscuously recognised peptides predicted in our selection strategies, compared with randomly selected peptides with low prediction scores. Our strategy offers a general approach to the identification of promiscuous epitopes tailored to target populations where there is limited knowledge of MHC allelic diversity.


Assuntos
Epitopos de Linfócito T/genética , Mycobacterium bovis/genética , Proteoma/genética , Tuberculose Bovina/microbiologia , Animais , Bovinos , Biologia Computacional , Humanos , Reprodutibilidade dos Testes , Tuberculose/microbiologia , Tuberculose/prevenção & controle , Vacinas contra a Tuberculose/imunologia , Tuberculose Bovina/prevenção & controle
15.
mBio ; 5(4): e01169-14, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25096875

RESUMO

Related species are often used to understand the molecular underpinning of virulence through examination of a shared set of biological features attributable to a core genome of orthologous genes. An important but insufficiently studied issue, however, is the extent to which the regulatory architectures are similarly conserved. A small number of studies have compared the primary transcriptomes of different bacterial species, but few have compared closely related species with clearly divergent evolutionary histories. We addressed the impact of differing modes of evolution within the genus Mycobacterium through comparison of the primary transcriptome of M. marinum with that of a closely related lineage, M. bovis. Both are thought to have evolved from an ancestral generalist species, with M. bovis and other members of the M. tuberculosis complex having subsequently undergone downsizing of their genomes during the transition to obligate pathogenicity. M. marinum, in contrast, has retained a large genome, appropriate for an environmental organism, and is a broad-host-range pathogen. We also examined changes over a shorter evolutionary time period through comparison of the primary transcriptome of M. bovis with that of another member of the M. tuberculosis complex (M. tuberculosis) which possesses an almost identical genome but maintains a distinct host preference. Importance: Our comparison of the transcriptional start site (TSS) maps of M. marinum and M. bovis uncovers a pillar of conserved promoters, noncoding RNA (NCRNA), and a genome-wide signal in the -35 promoter regions of both species. We identify evolutionarily conserved transcriptional attenuation and highlight its potential contribution to multidrug resistance mediated through the transcriptional regulator whiB7. We show that a species population history is reflected in its transcriptome and posit relaxed selection as the main driver of an abundance of canonical -10 promoter sites in M. bovis relative to M. marinum. It appears that transcriptome composition in mycobacteria is driven primarily by the availability of such sites and that their frequencies diverge significantly across the mycobacterial clade. Finally, through comparison of M. bovis and M. tuberculosis, we illustrate that single nucleotide polymorphism (SNP)-driven promoter differences likely underpin many of the transcriptional differences between M. tuberculosis complex lineages.


Assuntos
Mycobacterium tuberculosis/genética , Transcriptoma/genética , Evolução Molecular , Genoma Bacteriano/genética , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA