Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 88(22): e0125822, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36286488

RESUMO

Glycolysis is an ancient, widespread, and highly conserved metabolic pathway that converts glucose into pyruvate. In the canonical pathway, the phosphofructokinase (PFK) reaction plays an important role in controlling flux through the pathway. Clostridium thermocellum has an atypical glycolysis and uses pyrophosphate (PPi) instead of ATP as the phosphate donor for the PFK reaction. The reduced thermodynamic driving force of the PPi-PFK reaction shifts the entire pathway closer to thermodynamic equilibrium, which has been predicted to limit product titers. Here, we replace the PPi-PFK reaction with an ATP-PFK reaction. We demonstrate that the local changes are consistent with thermodynamic predictions: the ratio of fructose 1,6-bisphosphate to fructose-6-phosphate increases, and the reverse flux through the reaction (determined by 13C labeling) decreases. The final titer and distribution of fermentation products, however, do not change, demonstrating that the thermodynamic constraints of the PPi-PFK reaction are not the sole factor limiting product titer. IMPORTANCE The ability to control the distribution of thermodynamic driving force throughout a metabolic pathway is likely to be an important tool for metabolic engineering. The phosphofructokinase reaction is a key enzyme in Embden-Mayerhof-Parnas glycolysis and therefore improving the thermodynamic driving force of this reaction in C. thermocellum is believed to enable higher product titers. Here, we demonstrate switching from pyrophosphate to ATP does in fact increases the thermodynamic driving force of the phosphofructokinase reaction in vivo. This study also identifies and overcomes a physiological hurdle toward expressing an ATP-dependent phosphofructokinase in an organism that utilizes an atypical glycolytic pathway. As such, the method described here to enable expression of ATP-dependent phosphofructokinase in an organism with an atypical glycolytic pathway will be informative toward engineering the glycolytic pathways of other industrial organism candidates with atypical glycolytic pathways.


Assuntos
Clostridium thermocellum , Clostridium thermocellum/metabolismo , Difosfatos/metabolismo , Fosfofrutoquinases/genética , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/metabolismo , Glicólise , Termodinâmica , Trifosfato de Adenosina/metabolismo
2.
Metab Eng ; 42: 175-184, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28663138

RESUMO

Clostridium thermocellum ferments cellulose, is a promising candidate for ethanol production from cellulosic biomass, and has been the focus of studies aimed at improving ethanol yield. Thermoanaerobacterium saccharolyticum ferments hemicellulose, but not cellulose, and has been engineered to produce ethanol at high yield and titer. Recent research has led to the identification of four genes in T. saccharolyticum involved in ethanol production: adhE, nfnA, nfnB and adhA. We introduced these genes into C. thermocellum and observed significant improvements to ethanol yield, titer, and productivity. The four genes alone, however, were insufficient to achieve in C. thermocellum the ethanol yields and titers observed in engineered T. saccharolyticum strains, even when combined with gene deletions targeting hydrogen production. This suggests that other parts of T. saccharolyticum metabolism may also be necessary to reproduce the high ethanol yield and titer phenotype in C. thermocellum.


Assuntos
Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Clostridium thermocellum/metabolismo , Etanol/metabolismo , Thermoanaerobacterium/genética , Clostridium thermocellum/genética , Thermoanaerobacterium/enzimologia
3.
Metab Eng ; 39: 169-180, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27914869

RESUMO

The metabolism of Clostridium thermocellum is notable in that it assimilates sugar via the EMP pathway but does not possess a pyruvate kinase enzyme. In the wild type organism, there are three proposed pathways for conversion of phosphoenolpyruvate (PEP) to pyruvate, which differ in their cofactor usage. One path uses pyruvate phosphate dikinase (PPDK), another pathway uses the combined activities of PEP carboxykinase (PEPCK) and oxaloacetate decarboxylase (ODC). Yet another pathway, the malate shunt, uses the combined activities of PEPCK, malate dehydrogenase and malic enzyme. First we showed that there is no flux through the ODC pathway by enzyme assay. Flux through the remaining two pathways (PPDK and malate shunt) was determined by dynamic 13C labeling. In the wild-type strain, the malate shunt accounts for about 33±2% of the flux to pyruvate, with the remainder via the PPDK pathway. Deletion of the ppdk gene resulted in a redirection of all pyruvate flux through the malate shunt. This provides the first direct evidence of the in-vivo function of the malate shunt.


Assuntos
Vias Biossintéticas/fisiologia , Clostridium thermocellum/fisiologia , Malatos/metabolismo , Análise do Fluxo Metabólico/métodos , Fosfoenolpiruvato/metabolismo , Piruvato Quinase/metabolismo , Ácido Pirúvico/metabolismo , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Glucose/metabolismo , Glicólise/fisiologia , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Ácido Pirúvico/isolamento & purificação
4.
Biotechnol Biofuels Bioprod ; 16(1): 137, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710260

RESUMO

Clostridium thermocellum is a natively cellulolytic bacterium that is promising candidate for cellulosic biofuel production, and can produce ethanol at high yields (75-80% of theoretical) but the ethanol titers produced thus far are too low for commercial application. In several strains of C. thermocellum engineered for increased ethanol yield, ethanol titer seems to be limited by ethanol tolerance. Previous work to improve ethanol tolerance has focused on the WT organism. In this work, we focused on understanding ethanol tolerance in several engineered strains of C. thermocellum. We observed a tradeoff between ethanol tolerance and production. Adaptation for increased ethanol tolerance decreases ethanol production. Second, we observed a consistent genetic response to ethanol stress involving mutations at the AdhE locus. These mutations typically reduced NADH-linked ADH activity. About half of the ethanol tolerance phenotype could be attributed to the elimination of NADH-linked activity based on a targeted deletion of adhE. Finally, we observed that rich growth medium increases ethanol tolerance, but this effect is eliminated in an adhE deletion strain. Together, these suggest that ethanol inhibits growth and metabolism via a redox-imbalance mechanism. The improved understanding of mechanisms of ethanol tolerance described here lays a foundation for developing strains of C. thermocellum with improved ethanol production.

5.
Front Microbiol ; 12: 628308, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679651

RESUMO

The pyruvate kinase (PYK) isozyme from Thermoanaerobacterium saccharolyticum (TsPYK) has previously been used in metabolic engineering for improved ethanol production. This isozyme belongs to a subclass of PYK isozymes that include an extra C-domain. Like other isozymes that include this extra C-domain, we found that TsPYK is activated by AMP and ribose-5-phosphate (R5P). Our use of sugar-phosphate analogs generated a surprising result in that IMP and GMP are allosteric inhibitors (rather than activators) of TsPYK. We believe this to be the first report of any PYK isozyme being inhibited by IMP and GMP. A truncated protein that lacks the extra C-domain is also inhibited by IMP. A screen of several other bacterial PYK enzymes (include several that have the extra-C domain) indicates that the inhibition by IMP is specific to only a subset of those isozymes.

6.
Metab Eng Commun ; 10: e00122, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32025490

RESUMO

Thermoanaerobacterium saccharolyticum is an anaerobic thermophile that can ferment hemicellulose to produce biofuels, such as ethanol. It has been engineered to produce ethanol at high yield and titer. T. saccharolyticum uses the Embden-Meyerhof-Parnas (EMP) pathway for glycolysis. However, the genes and enzymes used in each step of the EMP pathway in T. saccharolyticum are not completely known. In T. saccharolyticum, both pyruvate kinase (PYK) and pyruvate phosphate dikinase (PPDK) are highly expressed based on transcriptomic and proteomic data. Both enzymes catalyze the formation of pyruvate from phosphoenolpyruvate (PEP). PYK is typically the last step of EMP glycolysis pathway while PPDK is reversible and is found mostly in C4 plants and some microorganisms. It is not clear what role PYK and PPDK play in T. saccharolyticum metabolism and fermentation pathways and whether both are necessary. In this study we deleted the ppdk gene in wild type and homoethanologen strains of T. saccharolyticum and showed that it is not essential for growth or ethanol production.

7.
Biotechnol Biofuels ; 13: 40, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32175007

RESUMO

BACKGROUND: Engineering efforts targeted at increasing ethanol by modifying the central fermentative metabolism of Clostridium thermocellum have been variably successful. Here, we aim to understand this variation by a multifaceted approach including genomic and transcriptomic analysis combined with chemostat cultivation and high solids cellulose fermentation. Three strain lineages comprising 16 strains total were examined. Two strain lineages in which genes involved in pathways leading to organic acids and/or sporulation had been knocked out resulted in four end-strains after adaptive laboratory evolution (ALE). A third strain lineage recapitulated mutations involving adhE that occurred spontaneously in some of the engineered strains. RESULTS: Contrary to lactate dehydrogenase, deleting phosphotransacetylase (pta, acetate) negatively affected steady-state biomass concentration and caused increased extracellular levels of free amino acids and pyruvate, while no increase in ethanol was detected. Adaptive laboratory evolution (ALE) improved growth and shifted elevated levels of amino acids and pyruvate towards ethanol, but not for all strain lineages. Three out of four end-strains produced ethanol at higher yield, and one did not. The occurrence of a mutation in the adhE gene, expanding its nicotinamide-cofactor compatibility, enabled two end-strains to produce more ethanol. A disruption in the hfsB hydrogenase is likely the reason why a third end-strain was able to make more ethanol. RNAseq analysis showed that the distribution of fermentation products was generally not regulated at the transcript level. At 120 g/L cellulose loadings, deletions of spo0A, ldh and pta and adaptive evolution did not negatively influence cellulose solubilization and utilization capabilities. Strains with a disruption in hfsB or a mutation in adhE produced more ethanol, isobutanol and 2,3-butanediol under these conditions and the highest isobutanol and ethanol titers reached were 5.1 and 29.9 g/L, respectively. CONCLUSIONS: Modifications in the organic acid fermentative pathways in Clostridium thermocellum caused an increase in extracellular pyruvate and free amino acids. Adaptive laboratory evolution led to improved growth, and an increase in ethanol yield and production due a mutation in adhE or a disruption in hfsB. Strains with deletions in ldh and pta pathways and subjected to ALE demonstrated undiminished cellulolytic capabilities when cultured on high cellulose loadings.

8.
Biotechnol Biofuels ; 11: 242, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30202437

RESUMO

BACKGROUND: Clostridium thermocellum has been the subject of multiple metabolic engineering strategies to improve its ability to ferment cellulose to ethanol, with varying degrees of success. For ethanol production in C. thermocellum, the conversion of pyruvate to acetyl-CoA is catalyzed primarily by the pyruvate ferredoxin oxidoreductase (PFOR) pathway. Thermoanaerobacterium saccharolyticum, which was previously engineered to produce ethanol of high yield (> 80%) and titer (70 g/L), also uses a pyruvate ferredoxin oxidoreductase, pforA, for ethanol production. RESULTS: Here, we introduced the T. saccharolyticum pforA and ferredoxin into C. thermocellum. The introduction of pforA resulted in significant improvements to ethanol yield and titer in C. thermocellum grown on 50 g/L of cellobiose, but only when four other T. saccharolyticum genes (adhA, nfnA, nfnB, and adhEG544D ) were also present. T. saccharolyticum ferredoxin did not have any observable impact on ethanol production. The improvement to ethanol production was sustained even when all annotated native C. thermocellum pfor genes were deleted. On high cellulose concentrations, the maximum ethanol titer achieved by this engineered C. thermocellum strain from 100 g/L Avicel was 25 g/L, compared to 22 g/L for the reference strain, LL1319 (adhA(Tsc)-nfnAB(Tsc)-adhEG544D (Tsc)) under similar conditions. In addition, we also observed that deletion of the C. thermocellum pfor4 results in a significant decrease in isobutanol production. CONCLUSIONS: Here, we demonstrate that the pforA gene can improve ethanol production in C. thermocellum as part of the T. saccharolyticum pyruvate-to-ethanol pathway. In our previous strain, high-yield (~ 75% of theoretical) ethanol production could be achieved with at most 20 g/L substrate. In this strain, high-yield ethanol production can be achieved up to 50 g/L substrate. Furthermore, the introduction of pforA increased the maximum titer by 14%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA