Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(4): e17254, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38556898

RESUMO

Freshwaters are highly threatened ecosystems that are vulnerable to chemical pollution and climate change. Freshwater taxa vary in their sensitivity to chemicals and changes in species composition can potentially affect the sensitivity of assemblages to chemical exposure. Here we explore the potential consequences of future climate change on the composition and sensitivity of freshwater macroinvertebrate assemblages to chemical stressors using the UK as a case study. Macroinvertebrate assemblages under end of century (2080-2100) and baseline (1980-2000) climate conditions were predicted for 608 UK sites for four climate scenarios corresponding to mean temperature changes of 1.28 to 3.78°C. Freshwater macroinvertebrate toxicity data were collated for 19 chemicals and the hierarchical species sensitivity distribution model was used to predict the sensitivity of untested taxa using relatedness within a Bayesian approach. All four future climate scenarios shifted assemblage compositions, increasing the prevalence of Mollusca, Crustacea and Oligochaeta species, and the insect taxa of Odonata, Chironomidae, and Baetidae species. Contrastingly, decreases were projected for Plecoptera, Ephemeroptera (except for Baetidae) and Coleoptera species. Shifts in taxonomic composition were associated with changes in the percentage of species at risk from chemical exposure. For the 3.78°C climate scenario, 76% of all assemblages became more sensitive to chemicals and for 18 of the 19 chemicals, the percentage of species at risk increased. Climate warming-induced increases in sensitivity were greatest for assemblages exposed to metals and were dependent on baseline assemblage composition, which varied spatially. Climate warming is predicted to result in changes in the use, environmental exposure and toxicity of chemicals. Here we show that, even in the absence of these climate-chemical interactions, shifts in species composition due to climate warming will increase chemical risk and that the impact of chemical pollution on freshwater macroinvertebrate biodiversity may double or quadruple by the end of the 21st century.


Assuntos
Ecossistema , Poluentes Ambientais , Animais , Teorema de Bayes , Biodiversidade , Poluição Ambiental , Invertebrados , Rios
2.
Ecotoxicol Environ Saf ; 246: 114143, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36201920

RESUMO

Chemical exposure concentrations and the composition of ecological receptors (e.g., species) vary in space and time, resulting in landscape-scale (e.g. catchment) heterogeneity. Current regulatory, prospective chemical risk assessment frameworks do not directly address this heterogeneity because they assume that reasonably worst-case chemical exposure concentrations co-occur (spatially and temporally) with biological species that are the most sensitive to the chemical's toxicity. Whilst current approaches may parameterise fate models with site-specific data and aim to be protective, a more precise understanding of when and where chemical exposure and species sensitivity co-occur enables risk assessments to be better tailored and applied mitigation more efficient. We use two aquatic case studies covering different spatial and temporal resolution to explore how geo-referenced data and spatial tools might be used to account for landscape heterogeneity of chemical exposure and ecological assemblages in prospective risk assessment. Each case study followed a stepwise approach: i) estimate and establish spatial chemical exposure distributions using local environmental information and environmental fate models; ii) derive toxicity thresholds for different taxonomic groups and determine geo-referenced distributions of exposure-toxicity ratios (i.e., potential risk); iii) overlay risk data with the ecological status of biomonitoring sites to determine if relationships exist. We focus on demonstrating whether the integration of relevant data and potential approaches is feasible rather than making comprehensive and refined risk assessments of specific chemicals. The case studies indicate that geo-referenced predicted environmental concentration estimations can be achieved with available data, models and tools but establishing the distribution of species assemblages is reliant on the availability of a few sources of biomonitoring data and tools. Linking large sets of geo-referenced exposure and biomonitoring data is feasible but assessment of risk will often be limited by the availability of ecotoxicity data. The studies highlight the important influence that choices for aggregating data and for the selection of statistical metrics have on assessing and interpreting risk at different spatial scales and patterns of distribution within the landscape. Finally, we discuss approaches and development needs that could help to address environmental heterogeneity in chemical risk assessment.


Assuntos
Monitoramento Ambiental , Modelos Teóricos , Estudos Prospectivos , Medição de Risco , Monitoramento Ambiental/métodos
3.
Ecotoxicol Environ Saf ; 162: 218-224, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29990734

RESUMO

Captive pandas are exposed to higher concentrations of environmental toxins in their food source and from atmospheric pollution than wild pandas. Moreover, the Qinling panda subspecies had significantly higher concentrations of toxic chemicals in its feces. To determine whether these toxicants also accumulate in panda's blood and impair its health, concentrations of persistent organic pollutants (POPs) and heavy metals were measured in blood samples. Four heavy metals (As, Cd, Cr and Pb), PCDD/Fs and PCBs were detected in blood drawn from captive Qinling pandas. Time spent in captivity was a better predictor of toxicant concentration accumulation than was panda age. More than 50% of the studied pandas were outside the normal levels for 11 health parameters, and five (ALT, LDH, Ca, Cl, TB) of the 11 parameters classified as abnormal were correlated with blood pollutant concentrations. The proportion of live sperm was significantly lower and the aberrance ratio of sperm was significantly greater for captive pandas than for wild ones. A short-term solution to reduce the health impacts of pollution and toxicant exposure of Qinling pandas is to relocate breeding centers to less contaminated areas and to strictly control the quality of their food provided. A longer term solution depends on improving air quality by reducing toxic emissions.


Assuntos
Poluentes Ambientais/toxicidade , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Metais Pesados/toxicidade , Espermatozoides/efeitos dos fármacos , Ursidae/fisiologia , Animais , Poluentes Ambientais/sangue , Poluição Ambiental , Masculino , Metais Pesados/sangue , Bifenilos Policlorados/sangue , Bifenilos Policlorados/toxicidade , Análise do Sêmen/veterinária
4.
Ecol Lett ; 20(10): 1315-1324, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28921860

RESUMO

There has been considerable focus on the impacts of environmental change on ecosystem function arising from changes in species richness. However, environmental change may affect ecosystem function without affecting richness, most notably by affecting population densities and community composition. Using a theoretical model, we find that, despite invariant richness, (1) small environmental effects may already lead to a collapse of function; (2) competitive strength may be a less important determinant of ecosystem function change than the selectivity of the environmental change driver and (3) effects on ecosystem function increase when effects on composition are larger. We also present a complementary statistical analysis of 13 data sets of phytoplankton and periphyton communities exposed to chemical stressors and show that effects on primary production under invariant richness ranged from -75% to +10%. We conclude that environmental protection goals relying on measures of richness could underestimate ecological impacts of environmental change.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Fitoplâncton , Ecossistema , Densidade Demográfica
5.
Ecotoxicol Environ Saf ; 143: 72-79, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28505482

RESUMO

Chemical elements exposure of endangered golden takins (Budorcas taxicolor bedfordi) living in the Qinling Mountains and in a captive breeding center was assessed by analyzing fecal samples. Concentrations of As, Co, Cr, Cu, Ni and Se were significantly higher in the feces of captive golden takins than the wild. There was no significant difference in the fecal concentrations of Cd, Mn, Hg, Pb or Zn for wild and captive animals. The element concentration of fecal samples collected from captive animals varied seasonally, with concentrations being lowest in spring and highest in winter and/or autumn. The food provided to captive animals varied both in the composition and the concentration of element present. Consumptions of feedstuff and additional foods such as D. sanguinalis and A. mangostanus for the captive golden takins were identified as the possible sources of chemical element exposure. The estimations of dietary intake of most elements by captive takins were below the oral reference dose, except for As and Pb, indicating that As and Pb were the key components which contributed to the potential non-carcinogenic risk for captive golden takins. In conclusion, captive golden takins were exposed to higher concentrations of chemical elements compared with the wild, which were likely due to their dietary difference. Conservation efforts of captive golden takin are potentially compromised by the elevated chemical element exposure and effort should focus on providing uncontaminated food for captive animals.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Monitoramento Ambiental , Fezes/química , Metais Pesados/análise , Ruminantes/crescimento & desenvolvimento , Altitude , Ração Animal/normas , Animais , China , Metais Pesados/metabolismo , Ruminantes/metabolismo , Estações do Ano
6.
Conserv Biol ; 28(2): 404-13, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24372643

RESUMO

Given that funds for biodiversity conservation are limited, there is a need to understand people's preferences for its different components. To date, such preferences have largely been measured in monetary terms. However, how people value biodiversity may differ from economic theory, and there is little consensus over whether monetary metrics are always appropriate or the degree to which other methods offer alternative and complementary perspectives on value. We used a choice experiment to compare monetary amounts recreational visitors to urban green spaces were willing to pay for biodiversity enhancement (increases in species richness for birds, plants, and aquatic macroinvertebrates) with self-reported psychological gains in well-being derived from visiting the same sites. Willingness-to-pay (WTP) estimates were significant and positive, and respondents reported high gains in well-being across 3 axes derived from environmental psychology theories (reflection, attachment, continuity with past). The 2 metrics were broadly congruent. Participants with above-median self-reported well-being scores were willing to pay significantly higher amounts for enhancing species richness than those with below-median scores, regardless of taxon. The socio-economic and demographic background of participants played little role in determining either their well-being or the probability of choosing a paying option within the choice experiment. Site-level environmental characteristics were only somewhat related to WTP, but showed strong associations with self-reported well-being. Both approaches are likely to reflect a combination of the environmental properties of a site and unobserved individual preference heterogeneity for the natural world. Our results suggest that either metric will deliver mutually consistent results in an assessment of environmental preferences, although which approach is preferable depends on why one wishes to measure values for the natural world.


Assuntos
Comportamento de Escolha , Conservação dos Recursos Naturais/economia , Recreação/economia , Biodiversidade , Cidades , Inglaterra , Humanos , Fatores Socioeconômicos , Inquéritos e Questionários
7.
Environ Int ; 171: 107705, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36549223

RESUMO

Freshwater ecosystems provide major benefits to human wellbeing-so-called ecosystem services (ES)-but are currently threatened among others by ecotoxicological pressure from chemicals reaching the environment. There is an increased motivation to incorporate ES in quantification tools that support decision-making, such as life cycle assessment (LCA). However, mechanistic models and frameworks that can systematically translate ecotoxicity effect data from chemical tests into eventual damage on species diversity, functional diversity, and ES in the field are still missing. While current approaches focus on translating predicted ecotoxicity impacts to damage in terms of species loss, no approaches are available in LCA and other comparative assessment frameworks for linking ecotoxicity to damage on ecosystem functioning or ES. To overcome this challenge, we propose a way forward based on evaluating available approaches to characterize damage of chemical pollution on freshwater ES. We first outline an overall framework for linking freshwater ecotoxicity effects to damage on related ES in compliance with the boundary conditions of quantitative, comparative assessments. Second, within the proposed framework, we present possible approaches for stepwise linking ecotoxicity effects to species loss, functional diversity loss, and damage on ES. Finally, we discuss strengths, limitations, and data availability of possible approaches for each step. Although most approaches for directly deriving damage on ES from either species loss or damage to functional diversity have not been operationalized, there are some promising ways forward. The Threshold Indicator Taxa ANalysis (TITAN) seems suitable to translate predicted ecotoxicity effects to a metric of quantitative damage on species diversity. A Trait Probability Density Framework (TPD) approach that incorporates various functional diversity components and functional groups could be adapted to link species loss to functional diversity loss. An Ecological Production Function (EPF) approach seems most promising for further linking functional diversity loss to damage on ES flows for human wellbeing. However, in order to integrate the entire pathway from predicted freshwater ecotoxicity to damage on ES into LCA and other comparative frameworks, the approaches adopted for each step need to be harmonized in terms of assumptions, boundary conditions and consistent interfaces with each other.


Assuntos
Ecossistema , Poluição Ambiental , Humanos , Animais , Ecotoxicologia , Água Doce/química , Estágios do Ciclo de Vida
8.
Ecotoxicology ; 21(5): 1550-69, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22555811

RESUMO

The ecological impact of the dithiocarbamate fungicide metiram was studied in outdoor freshwater microcosms, consisting of 14 enclosures placed in an experimental ditch. The microcosms were treated three times (interval 7 days) with the formulated product BAS 222 28F (Polyram®). Intended metiram concentrations in the overlying water were 0, 4, 12, 36, 108 and 324 µg a.i./L. Responses of zooplankton, macroinvertebrates, phytoplankton, macrophytes, microbes and community metabolism endpoints were investigated. Dissipation half-life (DT50) of metiram was approximately 1-6 h in the water column of the microcosm test system and the metabolites formed were not persistent. Multivariate analysis indicated treatment-related effects on the zooplankton (NOEC(community) = 36 µg a.i./L). Consistent treatment-related effects on the phytoplankton and macroinvertebrate communities and on the sediment microbial community could not be demonstrated or were minor. There was no evidence that metiram affected the biomass, abundance or functioning of aquatic hyphomycetes on decomposing alder leaves. The most sensitive populations in the microcosms comprised representatives of Rotifera with a NOEC of 12 µg a.i./L on isolated sampling days and a NOEC of 36 µg a.i./L on consecutive samplings. At the highest treatment-level populations of Copepoda (zooplankton) and the blue-green alga Anabaena (phytoplankton) also showed a short-term decline on consecutive sampling days (NOEC = 108 µg a.i./L). Indirect effects in the form of short-term increases in the abundance of a few macroinvertebrate and several phytoplankton taxa were also observed. The overall community and population level no-observed-effect concentration (NOEC(microcosm)) was 12-36 µg a.i./L. At higher treatment levels, including the test systems that received the highest dose, ecological recovery of affected measurement endpoints was fast (effect period < 8 weeks).


Assuntos
Ditiocarb/toxicidade , Água Doce/química , Fungicidas Industriais/toxicidade , Resíduos de Praguicidas/toxicidade , Rotíferos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Cianobactérias/efeitos dos fármacos , Cianobactérias/metabolismo , Ditiocarb/análise , Relação Dose-Resposta a Droga , Ecossistema , Determinação de Ponto Final , Monitoramento Ambiental/métodos , Fungicidas Industriais/análise , Meia-Vida , Análise Multivariada , Resíduos de Praguicidas/análise , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/metabolismo , Medição de Risco , Rotíferos/metabolismo , Poluentes Químicos da Água/análise , Zooplâncton/efeitos dos fármacos , Zooplâncton/metabolismo
9.
Integr Environ Assess Manag ; 18(5): 1135-1147, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34951104

RESUMO

Conventional ecological risk assessment (ERA) predominately evaluates the impact of individual chemical stressors on a limited range of taxa, which are assumed to act as proxies to predict impacts on freshwater ecosystem function. However, it is recognized that this approach has limited ecological relevance. We reviewed the published literature to identify measures that are potential functional indicators of down-the-drain chemical stress, as an approach to building more ecological relevance into ERA. We found wide variation in the use of the term "ecosystem function," and concluded it is important to distinguish between measures of processes and measures of the capacity for processes (i.e., species' functional traits). Here, we present a classification of potential functional indicators and suggest that including indicators more directly connected with processes will improve the detection of impacts on ecosystem functioning. The rate of leaf litter breakdown, oxygen production, carbon dioxide consumption, and biomass production have great potential to be used as functional indicators. However, the limited supporting evidence means that further study is needed before these measures can be fully implemented and interpreted within an ERA and regulatory context. Sensitivity to chemical stress is likely to vary among functional indicators depending on the stressor and ecosystem context. Therefore, we recommend that ERA incorporates a variety of indicators relevant to each aspect of the function of interest, such as a direct measure of a process (e.g., rate of leaf litter breakdown) and a capacity for a process (e.g., functional composition of macroinvertebrates), alongside structural indicators (e.g., taxonomic diversity of macroinvertebrates). Overall, we believe that the consideration of functional indicators can add value to ERA by providing greater ecological relevance, particularly in relation to indirect effects, functional compensation (Box 1), interactions of multiple stressors, and the importance of ecosystem context. Environ Assess Manag 2022;18:1135-1147. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Ecossistema , Monitoramento Ambiental , Ecotoxicologia , Água Doce , Medição de Risco
10.
Ecology ; 92(9): 1711-6, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21939066

RESUMO

Resource subsidies between habitats are common and create the potential for the propagation of environmental impacts across system boundaries. However, recent understanding of the potential for subsidy-mediated cross-system impact propagations is limited and primarily based on passive flows of nutrients and detritus or short-term effects. Here, we assess the effects of sustained alterations in aquatic insect emergence (active subsidy pathway), due to chronic stream pollution, for riparian spiders. The sustained reduction in aquatic insect densities at the polluted reaches resulted in a marked decline in web spider population density and a shift in spider community composition. Our results provide the first evidence that stream pollution can control populations and community structure of terrestrial predators via sustained alterations in aquatic subsidies, emphasizing the role of subtle trophic linkages in the transmission of environmental impacts across ecosystem boundaries.


Assuntos
Ecossistema , Aranhas/efeitos dos fármacos , Aranhas/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Meio Ambiente , Monitoramento Ambiental , Insetos/efeitos dos fármacos , Larva/efeitos dos fármacos , Fatores de Tempo
11.
Sci Total Environ ; 791: 148631, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34243988

RESUMO

An ecosystem services (ES) approach to chemical risk assessment has many potential advantages, but there are also substantial challenges regarding its implementation. We report the findings of a multi-stakeholder workshop that evaluated the feasibility of adopting an ES approach to chemical risk assessment using currently available tools and data. Also evaluated is the added value such an approach would bring to environmental decision making. The aim was to build consensus across disparate stakeholders and to co-produce a common understanding of the regulatory benefits and feasibility of implementing an ES approach in European chemicals regulation. Workshop discussions were informed by proof of concept studies and resulted in the development of a novel tiered framework for assessing chemical risk to ES delivery. There was consensus on the substantial added value of adopting an ES-based approach for regulatory decision making. Ecosystem services provide a common currency and a 'unifying approach' across environmental compartments, stressors and regulatory frameworks. The ES approach informs prioritisation of risk and remedial action and aids risk communication and risk management. It facilitates a more holistic assessment, enables ES trade-offs to be compared across alternative interventions, and supports comparative risk assessments and a socio-economic analysis of management options and decisions. Key to realising this added value is a shift away from using a single threshold value to categorise risk, towards a consideration of the exposure-effect distribution for individual ES of interest. Also required is the development of an integrated systems-level approach across regulatory frameworks and agreement on specific protection goals and scenarios for framing environmental risk assessments. The need to further develop tools for extrapolating toxicity data to service providers and ES delivery, including logic chains and ecological production functions, was highlighted. Also agreed was the need for methods and metrics for ES valuation to be used in assessing trade-offs.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Medição de Risco , Gestão de Riscos
12.
Sci Total Environ ; 789: 147857, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34323835

RESUMO

The feasibility and added value of an ecosystem services approach in retrospective environmental risk assessment were evaluated using a site-specific case study in a lowland UK river. The studied water body failed to achieve good ecological status temporarily in 2018, due in part to the exceedance of the environmental quality standard (annual average EQS) for zinc. Potential ecosystem service delivery was quantified for locally prioritised ecosystem services: regulation of chemical condition; maintaining nursery populations and habitats; recreational fishing; nature watching. Quantification was based on observed and expected taxa or functional groups within WFD biological quality elements, including macrophytes, benthic macroinvertebrates and fish, and on published functional trait data for constituent taxa. Benthic macroinvertebrate taxa were identified and enumerated before, during and after zinc EQS exceedance, enabling a generic retrospective risk assessment for this biological quality element, which was found to have good ecosystem service potential. An additional targeted risk assessment for zinc was based on laboratory-based species sensitivity distributions normalised using biotic-ligand modelling to account for site-specific, bioavailability-corrected zinc exposure. Risk to ecosystem services for diatoms (microalgae) was found to be high, while risks for benthic macroinvertebrates and fish were found to be low. The status of potential ecosystem service delivery (ESD) by fish was equivalent to high ecological status defined under the WFD, while ESD was higher for benthic macroinvertebrates than defined by WFD methods. The illustrated ecosystem services approach uses readily available data and adds significantly to the taxonomic approach currently used under the WFD by using functional traits to evaluate services that are prioritised as being important in water bodies. The main shortcomings of the illustrated approach were lack of: representation of bacteria and fungi; WFD predicted species lists for diatoms and macrophytes; site-specific functional trait data required for defining actual (rather than potential) ecosystem service delivery.

13.
Sci Total Environ ; 753: 141800, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33207462

RESUMO

Ecosystems are usually populated by many species. Each of these species carries the potential to show a different sensitivity towards all of the numerous chemical compounds that can be present in their environment. Since experimentally testing all possible species-chemical combinations is impossible, the ecological risk assessment of chemicals largely depends on cross-species extrapolation approaches. This review overviews currently existing cross-species extrapolation methodologies, and discusses i) how species sensitivity could be described, ii) which predictors might be useful for explaining differences in species sensitivity, and iii) which statistical considerations are important. We argue that risk assessment can benefit most from modelling approaches when sensitivity is described based on ecologically relevant and robust effects. Additionally, specific attention should be paid to heterogeneity of the training data (e.g. exposure duration, pH, temperature), since this strongly influences the reliability of the resulting models. Regarding which predictors are useful for explaining differences in species sensitivity, we review interspecies-correlation, relatedness-based, traits-based, and genomic-based extrapolation methods, describing the amount of mechanistic information the predictors contain, the amount of input data the models require, and the extent to which the different methods provide protection for ecological entities. We develop a conceptual framework, incorporating the strengths of each of the methods described. Finally, the discussion of statistical considerations reveals that regardless of the method used, statistically significant models can be found, although the usefulness, applicability, and understanding of these models varies considerably. We therefore recommend publication of scientific code along with scientific studies to simultaneously clarify modelling choices and enable elaboration on existing work. In general, this review specifies the data requirements of different cross-species extrapolation methods, aiming to make regulators and publishers more aware that access to raw- and meta-data needs to be improved to make future cross-species extrapolation efforts successful, enabling their integration into the regulatory environment.

14.
Sci Total Environ ; 798: 149329, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34375230

RESUMO

The objective of this case study was to explore the feasibility of using ecological models for applying an ecosystem services-based approach to environmental risk assessment using currently available data and methodologies. For this we used a 5 step approach: 1) selection of environmental scenario, 2) ecosystem service selection, 3) development of logic chains, 4) selection and application of ecological models and 5) detailed ecosystem service assessment. The study system is a European apple orchard managed according to integrated pest management principles. An organophosphate insecticide was used as the case study chemical. Four ecosystem services are included in this case study: soil quality regulation, pest control, pollination and recreation. Logic chains were developed for each ecosystem service and describe the link between toxicant effects on service providing units and ecosystem services delivery. For the soil quality regulation ecosystem service, springtails and earthworms were the service providing units, for the pest control ecosystem service it was ladybirds, for the pollination ecosystem service it was honeybees and for the recreation ecosystem service it was the meadow brown butterfly. All the ecological models addressed the spatio-temporal magnitude of the direct effects of the insecticide on the service providing units and ecological production functions were used to extrapolate these outcomes to the delivery of ecosystem services. For all ecosystem services a decision on the acceptability of the modelled and extrapolated effects on the service providing units could be made using the protection goals as set by the European Food Safety Authority (EFSA). Developing quantitative ecological production functions for extrapolation of ecosystem services delivery from population endpoints remains one of the major challenges. We feel that the use of ecological models can greatly add to this development, although the further development of existing ecological models, and of new models, is needed for this.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Abelhas , Monitoramento Ambiental , Modelos Teóricos , Polinização , Medição de Risco
15.
Environ Toxicol Chem ; 28(11): 2449-57, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19572771

RESUMO

Ecological risk assessments tend to focus on contaminant effects on single species in isolation. However, additional effects from interactions between species (e.g., predator-prey interactions) may also occur in natural systems. The present study investigated the consequences of sublethal contaminant effects in prey on predator-prey interactions, particularly the interaction between prey behavioral changes and predation by predators with different hunting strategies. Ambush (Ischnura elegans Vander Linden [Insecta, Odonata]) and active (Notonecta glauca Linnaeus [Insecta, Heteroptera]) predator species were used in conjunction with three prey species (Asellus aquaticus Linnaeus [Crustacea, Isopoda], Cloion dipterum Linnaeus [Insecta, Ephemeroptera], and Chironomus riparius Meigen [Insecta, Diptera]). Immobilized prey demonstrated the importance of prey behavior for determining predation rates for both single- and multiple-prey species. Chironomus riparius was less responsive following exposure to cadmium, becoming more vulnerableto attack by the active but not the ambush predator. Some evidence was also observed for reduced general activity in C. dipterum following cadmium exposure. Sublethal exposure of prey did not affect the prey choice of active predators, possibly because of prey behavioral changes being insufficient to influence their relative availabilities. However, cadmium exposure of prey did alter their susceptibility to ambush predators. There was a reduced proportion of C. dipterum and an increased proportion of A. aquaticus in the diet of ambush predators, possibly because of reduced activity in C. dipterum affecting their relative encounter rates with predators. Sublethal exposures can therefore result in reduced prey survival that would not be predicted by single-species toxicity tests.


Assuntos
Cádmio/toxicidade , Monitoramento Ambiental , Insetos/metabolismo , Comportamento Predatório , Testes de Toxicidade , Animais , Ecologia , Medição de Risco
16.
Environ Pollut ; 253: 800-810, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31344541

RESUMO

Crested ibis (Nipponia nippon), one of the rarest birds in the world, was almost extinct in the historically widespread areas partly due to the environmental pollution. Therefore, non-invasive indicators of feather, eggshell, and excrement were used to investigate the exposure of this endangered bird to eleven trace elements in this study. The results indicated that crested ibises under in situ and ex situ conservations were diversely exposed to trace elements, with higher exposure levels of As, Cd, and Mn in the wild, but higher exposure levels of Hg, Se, and Zn in the captive breeding center. In addition, concentrations of As, Co, Cr, and Ni were significantly greater in the sediments of three types of foraging habitats for wild crested ibis, but concentration of Se was greater in the soil of captive cages. Feather and eggshell of crested ibis exhibited a very consistent indication for most of the trace elements, and concentrations of almost all of the elements in the excrements were very consistent with the results in the environmental samples (sediments or soils). Concentrations of As, Hg, Mn, and Zn in feathers, and Mn and Zn in eggshells of wild and captive crested ibis were greater than those in other similar species. Moreover, As, Cd, Cu, and Mn concentrations in excrement of wild crested ibises were greater than that in captive individuals and other species, but Se and Zn concentrations in excrement of captive crested ibises were greater than that of the wild and other species. The present study provided evidence that both of the wild and captive crested ibis were exposed to trace elements, which may be harmful to their health.


Assuntos
Aves , Monitoramento Ambiental , Plumas/química , Oligoelementos/análise , Animais , Cruzamento , Ecossistema , Espécies em Perigo de Extinção
17.
Sci Total Environ ; 651(Pt 1): 1067-1077, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30266052

RESUMO

The ecosystem services approach has gained broad interest in regulatory and policy circles for use in ecological risk assessment. Whilst identifying several challenges, scientific experts from European regulatory authorities, the chemical industry and academia considered the approach applicable to all chemical sectors and potentially contributing to greater ecological relevance for setting and assessing environmental protection goals compared to current European regulatory frameworks for chemicals. These challenges were addressed in workshops to develop a common understanding across stakeholders on how the ecosystem services concept might be used in chemical risk assessment and what would need to be done to implement it. This paper describes the consensus outcome of those discussions. Knowledge gaps and research needs were identified and prioritised, exploring the use of novel approaches from ecology, ecotoxicology and ecological modelling. Where applicable, distinction is made between prospective and retrospective ecological risk assessment. For prospective risk assessment the development of environmental scenarios accounting for chemical exposure and ecological conditions was designated as a top priority. For retrospective risk assessment the top priority research need was development of reference conditions for key ecosystem services and guidance for their derivation. Both prospective and retrospective risk assessment would benefit from guidance on the taxa and measurement endpoints relevant to specific ecosystem services and from improved understanding of the relationships between measurement endpoints from standard toxicity tests and the ecosystem services of interest (i.e. assessment endpoints). The development of mechanistic models, which could serve as ecological production functions, was identified as a priority. A conceptual framework for future chemical risk assessment based on an ecosystem services approach is presented.

18.
EFSA J ; 17(Suppl 1): e170705, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32626442

RESUMO

Ecosystem services (ES) are the benefits that people obtain from ecosystems. Investigating the environment through an ES framework has gained wide acceptance in the international scientific community and is applied by policymakers to protect biodiversity and safeguard the sustainability of ecosystems. This approach can enhance the ecological and societal relevance of pre-market/prospective environmental risk assessments (ERAs) of regulated stressors by: (1) informing the derivation of operational protection goals; (2) enabling the integration of environmental and human health risk assessments; (3) facilitating horizontal integration of policies and regulations; (4) leading to more comprehensive and consistent environmental protection; (5) articulating the utility of, and trade-offs involved in, environmental decisions; and (6) enhancing the transparency of risk assessment results and the decisions based upon them. Realisation of these advantages will require challenges that impede acceptance of an ES approach to be overcome. Particularly, there is concern that, if biodiversity only matters to the extent that it benefits humans, the intrinsic value of nature is ignored. Moreover, our understanding of linkages among ecological components and the processes that ultimately deliver ES is incomplete, valuing ES is complex, and there is no standard ES lexicon and limited familiarity with the approach. To help overcome these challenges, we encourage: (1) further research to establish biodiversity-ES relationships; (2) the development of approaches that (i) quantitatively translate responses to chemical stressors by organisms and groups of organisms to ES delivery across different spatial and temporal scales, (ii) measure cultural ES and ease their integration into ES valuations, and (iii) appropriately value changes in ES delivery so that trade-offs among different management options can be assessed; (3) the establishment of a standard ES lexicon; and (4) building capacity in ES science and how to apply ES to ERAs. These development needs should not prevent movement towards implementation of an ES approach in ERAs, as the advantages we perceive of using this approach render it more than worthwhile to tackle those challenges. Society and the environment stand to benefit from this shift in how we conduct the ERA of regulated stressors.

19.
Integr Environ Assess Manag ; 15(3): 320-344, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30609273

RESUMO

High-profile reports of detrimental scientific practices leading to retractions in the scientific literature contribute to lack of trust in scientific experts. Although the bulk of these have been in the literature of other disciplines, environmental toxicology and chemistry are not free from problems. While we believe that egregious misconduct such as fraud, fabrication of data, or plagiarism is rare, scientific integrity is much broader than the absence of misconduct. We are more concerned with more commonly encountered and nuanced issues such as poor reliability and bias. We review a range of topics including conflicts of interests, competing interests, some particularly challenging situations, reproducibility, bias, and other attributes of ecotoxicological studies that enhance or detract from scientific credibility. Our vision of scientific integrity encourages a self-correcting culture that promotes scientific rigor, relevant reproducible research, transparency in competing interests, methods and results, and education. Integr Environ Assess Manag 2019;00:000-000. © 2019 SETAC.


Assuntos
Conflito de Interesses , Ecotoxicologia/ética , Plágio , Má Conduta Científica/ética , Reprodutibilidade dos Testes
20.
Sci Total Environ ; 621: 1342-1351, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29054617

RESUMO

The ecosystem services (ES) approach is gaining broad interest in regulatory and policy arenas for use in landscape management and ecological risk assessment. It has the potential to bring greater ecological relevance to the setting of environmental protection goals and to the assessment of the ecological risk posed by chemicals. A workshop, organised under the auspices of the Society of Environmental Toxicology and Chemistry Europe, brought together scientific experts from European regulatory authorities, the chemical industry and academia to discuss and evaluate the challenges associated with implementing an ES approach to chemical ecological risk assessment (ERA). Clear advantages of using an ES approach in prospective and retrospective ERA were identified, including: making ERA spatially explicit and of relevance to management decisions (i.e. indicating what ES to protect and where); improving transparency in communicating risks and trade-offs; integrating across multiple stressors, scales, habitats and policies. A number of challenges were also identified including: the potential for increased complexity in assessments; greater data requirements; limitations in linking endpoints derived from current ecotoxicity tests to impacts on ES. In principle, the approach was applicable to all chemical sectors, but the scale of the challenge of applying an ES approach to general chemicals with widespread and dispersive uses leading to broad environmental exposure, was highlighted. There was agreement that ES-based risk assessment should be based on the magnitude of impact rather than on toxicity thresholds. The need for more bioassays/tests with functional endpoints was recognized, as was the role of modelling and the need for ecological production functions to link measurement endpoints to assessment endpoints. Finally, the value of developing environmental scenarios that can be combined with spatial information on exposure, ES delivery and service provider vulnerability was recognized.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Monitoramento Ambiental , Europa (Continente) , Estudos Prospectivos , Estudos Retrospectivos , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA