Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 122(1): 013402, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31012724

RESUMO

We study the loss of atoms in quantum Newton's cradles with a range of average energies and transverse confinements. We find that the three-body collision rate in one-dimension is strongly energy dependent, as predicted by a strictly 1D theory. We adapt the theory to atoms in waveguides, then, using detailed momentum measurements to infer all the collisions that occur, we compare the observed loss to the adapted theory and find that they agree well.

2.
Science ; 373(6559): 1129-1133, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34516835

RESUMO

The dynamics of strongly interacting many-body quantum systems are notoriously complex and difficult to simulate. A recently proposed theory called generalized hydrodynamics (GHD) promises to efficiently accomplish such simulations for nearly integrable systems. We test GHD with bundles of ultracold one-dimensional (1D) Bose gases by performing large trap quenches in both the strong and intermediate coupling regimes. We find that theory and experiment agree well over dozens of trap oscillations, for average dimensionless coupling strengths that range from 0.3 to 9.3. Our results show that GHD can accurately describe the quantum dynamics of a 1D nearly integrable experimental system even when particle numbers are low and density changes are large and fast.

3.
Science ; 367(6485): 1461-1464, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32217723

RESUMO

The wave function of a Tonks-Girardeau (T-G) gas of strongly interacting bosons in one dimension maps onto the absolute value of the wave function of a noninteracting Fermi gas. Although this fermionization makes many aspects of the two gases identical, their equilibrium momentum distributions are quite different. We observed dynamical fermionization, where the momentum distribution of a T-G gas evolves from bosonic to fermionic after its axial confinement is removed. The asymptotic momentum distribution after expansion in one dimension is the distribution of rapidities, which are the conserved quantities associated with many-body integrable systems. Our measurements agree well with T-G gas theory. We also studied momentum evolution after the trap depth is suddenly changed to a new nonzero value, and we observed the theoretically predicted bosonic-fermionic oscillations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA