Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(13): e202115030, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35138018

RESUMO

We demonstrate catalytic organic synthesis by Resonant Acoustic Mixing (RAM): a mechanochemical methodology that does not require bulk solvent or milling media. Using as model reactions ruthenium-catalyzed ring-closing metathesis and copper-catalyzed sulfonamide-isocyanate coupling, RAM mechanosynthesis is shown to be faster, operationally simpler than conventional ball-milling, while also providing the first example of a mechanochemical strategy for ruthenium-catalyzed ene-yne metathesis. Reactions by RAM are readily and directly scaled-up without any significant changes in reaction conditions, as shown by the straightforward 200-fold scaling-up of the synthesis of the antidiabetic drug Tolbutamide, from hundreds of milligrams directly to 30 grams.


Assuntos
Rutênio , Acústica , Catálise , Técnicas de Química Sintética , Cobre
2.
Beilstein J Org Chem ; 13: 2160-2168, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29114323

RESUMO

We provide the first in situ and real-time study of the effect of milling frequency on the course of a mechanochemical organic reaction conducted using a vibratory shaker (mixer) ball mill. The use of in situ Raman spectroscopy for real-time monitoring of the mechanochemical synthesis of a 2,3-diphenylquinoxaline derivative revealed a pronounced dependence of chemical reactivity on small variations in milling frequency. In particular, in situ measurements revealed the establishment of two different regimes of reaction kinetics at different frequencies, providing tentative insight into processes of mechanical activation in organic mechanochemical synthesis.

3.
Molecules ; 21(11)2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27854340

RESUMO

Secondary and tertiary alcohols synthesized via allylation of aldehydes and ketones are important compounds in bioactive natural products and industry, including pharmaceuticals. Development of a mechanochemical method using potassium allyltrifluoroborate salt and water, to successfully perform the allylation of aromatic and aliphatic carbonyl compounds is reported for the first time. By controlling the grinding parameters, the methodology can be selective, namely, very efficient for aldehydes and ineffective for ketones, but by employing lanthanide catalysts, the reactions with ketones can become practically quantitative. The catalyzed reactions can also be performed under mild aqueous stirring conditions. Considering the allylation agent and its by-products, aqueous media, energy efficiency and use of catalyst, the methodology meets most of the green chemistry principles.


Assuntos
Aldeídos/química , Química Verde , Cetonas/química , Álcoois/química , Aldeídos/síntese química , Catálise , Cetonas/síntese química , Elementos da Série dos Lantanídeos , Solventes/química
4.
ACS Omega ; 5(51): 33329-33339, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33403295

RESUMO

Aryl thiocyanate compounds are important building blocks for the synthesis of bioactive compounds and intermediates for several functional groups. Reported thiocyanation reactions via C-H functionalization have limited substrate scope and low RME. The ball-milling method reported here uses ammonium persulfate and ammonium thiocyanate as reagents and silica as a grinding auxiliary. It afforded aryl thiocyanates with moderate to excellent yields for a wide variety of aryl compounds (36 examples, 8-96% yield), such as anilines, phenols, anisoles, thioanisole, and indole, thus tolerating substrates with sensitive functional groups. New products such as benzo[d][1,3]oxathiol-2-ones were obtained with C-4 substituted phenols. Thus, to our knowledge, we report, for the first time, aryl thiocyanation reaction by ball-milling at room temperature and solvent-free conditions, with short reaction times and no workup. Analysis of several mass-based green metrics indicates that it is an efficient greener method.

5.
Molecules ; 12(9): 2089-105, 2007 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-17962728

RESUMO

The aqueous tin-mediated Barbier reaction affords good to excellent yields and moderate syn diastereoselectivity under basic and acidic conditions. The high yields and stereoselectivity observed in the case of o-substituted aldehydes suggest a cyclic organotin intermediate or transition state in K2HPO4 solution. A practical and efficient aqueous tin allylation of methoxy- and hydroxybenzaldehydes can be carried out in HCl solution in 15 minutes to afford the corresponding homoallylic alcohols in high yields. Aliphatic aldehydes give moderate to excellent yields with reaction times ranging from 30 to 60 minutes. Under these conditions, crotylation gives exclusively the gamma-product and the syn isomer is formed preferentially. For 2-methoxybenzaldehyde, an equilibration of the isomers to a syn/anti ratio of 1:1 can be observed after several hours. Control experiments with radical sources or scavengers give no support for radical intermediates. NMR studies suggest a mechanism involving an organotin intermediate. The major organotin species formed depends on the reaction medium and the reaction time. The use of acidic solution reduces the reaction times, due to the acceleration of the formation of the allyltin(IV) species.


Assuntos
Aldeídos/química , Compostos Alílicos/química , Modelos Químicos , Estanho/química , Benzaldeídos/química , Elétrons , Espectroscopia de Ressonância Magnética , Oxirredução , Prótons , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA