Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Blood ; 119(24): 5772-81, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22538852

RESUMO

Multiple myeloma (MM) cells are characterized by high protein synthesis resulting in chronic endoplasmic reticulum (ER) stress, which is adaptively managed by the unfolded protein response. Inositol-requiring enzyme 1α (IRE1α) is activated to splice X-box binding protein 1 (XBP1) mRNA, thereby increasing XBP1s protein, which in turn regulates genes responsible for protein folding and degradation during the unfolded protein response. In this study, we examined whether IRE1α-XBP1 pathway is a potential therapeutic target in MM using a small-molecule IRE1α endoribonuclease domain inhibitor MKC-3946. MKC-3946 triggered modest growth inhibition in MM cell lines, without toxicity in normal mononuclear cells. Importantly, it significantly enhanced cytotoxicity induced by bortezomib or 17-AAG, even in the presence of bone marrow stromal cells or exogenous IL-6. Both bortezomib and 17-AAG induced ER stress, evidenced by induction of XBP1s, which was blocked by MKC-3946. Apoptosis induced by these agents was enhanced by MKC-3946, associated with increased CHOP. Finally, MKC-3946 inhibited XBP1 splicing in a model of ER stress in vivo, associated with significant growth inhibition of MM cells. Taken together, our results demonstrate that blockade of XBP1 splicing by inhibition of IRE1α endoribonuclease domain is a potential therapeutic option in MM.


Assuntos
Proteínas de Ligação a DNA/genética , Endorribonucleases/antagonistas & inibidores , Mieloma Múltiplo/tratamento farmacológico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Splicing de RNA/efeitos dos fármacos , Fatores de Transcrição/genética , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Benzoquinonas/farmacologia , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Ácidos Borônicos/farmacologia , Ácidos Borônicos/uso terapêutico , Bortezomib , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/metabolismo , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Interleucina-6/farmacologia , Lactamas Macrocíclicas/farmacologia , Camundongos , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Pirazinas/farmacologia , Pirazinas/uso terapêutico , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição de Fator Regulador X , Transdução de Sinais/efeitos dos fármacos , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Proteína 1 de Ligação a X-Box , eIF-2 Quinase/metabolismo
2.
J Biol Chem ; 286(14): 12743-55, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21303903

RESUMO

Inositol-requiring enzyme 1 (IRE1) is the most highly conserved signaling node of the unfolded protein response (UPR) and represents a potential therapeutic target for a number of diseases associated with endoplasmic reticulum stress. IRE1 activates the XBP-1 transcription factor by site-specific cleavage of two hairpin loops within its mRNA to facilitate its nonconventional splicing and alternative translation. We screened for inhibitors using a construct containing the unique cytosolic kinase and endoribonuclease domains of human IRE1α (hIRE1α-cyto) and a mini-XBP-1 stem-loop RNA as the substrate. One class compounds was salicylaldehyde analogs from the hydrolyzed product of salicylaldimines in the library. Salicylaldehyde analogs were active in inhibiting the site-specific cleavage of several mini-XBP-1 stem-loop RNAs in a dose-dependent manner. Salicyaldehyde analogs were also active in inhibiting yeast Ire1 but had little activity inhibiting RNase L or the unrelated RNases A and T1. Kinetic analysis revealed that one potent salicylaldehyde analog, 3-ethoxy-5,6-dibromosalicylaldehyde, is a non-competitive inhibitor with respect to the XBP-1 RNA substrate. Surface plasmon resonance studies confirmed this compound bound to IRE1 in a specific, reversible and dose-dependent manner. Salicylaldehydes inhibited XBP-1 splicing induced pharmacologically in human cells. These compounds also blocked transcriptional up-regulation of known XBP-1 targets as well as mRNAs targeted for degradation by IRE1. Finally, the salicylaldehyde analog 3-methoxy-6-bromosalicylaldehyde strongly inhibited XBP-1 splicing in an in vivo model of acute endoplasmic reticulum stress. To our knowledge, salicylaldehyde analogs are the first reported specific IRE1 endoribonuclease inhibitors.


Assuntos
Aldeídos/química , Endorribonucleases/antagonistas & inibidores , Endorribonucleases/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Western Blotting , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endorribonucleases/química , Feminino , Humanos , Concentração Inibidora 50 , Proteínas de Membrana/química , Camundongos , Ligação Proteica , Dobramento de Proteína/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/química , Fatores de Transcrição de Fator Regulador X , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína 1 de Ligação a X-Box
3.
Int Rev Immunol ; 26(3-4): 223-47, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17558745

RESUMO

Cancer has currently overtaken heart disease as the major cause of mortality in the United States. The Human Genome Project, advances in informatics, miniaturization of sample collection, and increased knowledge of cell signaling pathways has revolutionized the study of disease. Genomics, proteomics, and metabolomics are currently being used to develop molecular signatures for disease diagnosis, prognosis, and therapeutic efficacy. Tumor-associated antigens discovered by these methods are being used to develop passive (humoral) as well as active immunotherapy strategies to stimulate the immune system. Development and validation of biomarkers on a parallel track with therapeutics can speed development times by accurate screening of patient populations and substituting surrogate markers that correlate well with clinical outcomes.


Assuntos
Antígenos de Neoplasias/análise , Biomarcadores Tumorais/análise , Imunoterapia/métodos , Neoplasias/terapia , Anticorpos Monoclonais/uso terapêutico , Antígenos de Neoplasias/imunologia , Biomarcadores Tumorais/imunologia , Ensaios Clínicos como Assunto , Humanos , Imunoterapia Ativa/métodos , Neoplasias/imunologia , Neoplasias/metabolismo , Transdução de Sinais/imunologia
4.
Am J Pharmacogenomics ; 4(3): 169-76, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15174898

RESUMO

Among cancers, lung cancer is the single biggest killer in the US. It is estimated that lung cancer was responsible for 171900 newly diagnosed cases of cancer in the US in 2003, and for 157200 deaths. Over many years, however, there has been little improvement in the clinical outcome of lung cancer, and any improvement in the incidence or mortality from lung cancer can largely be attributed to smoking cessation and not to the success of therapy. The histopathology of lung cancer reveals that it is a disease with many faces. Lung cancer is often nonresponsive to traditional therapy, leaving few, if any, alternatives in the management of the advanced stages of the disease. The molecular pathogenesis of lung cancer, only recently illuminated, involves numerous molecular and cell biological changes revealing a very complex disease progression. Large-scale mRNA expression analysis has been recently used to classify lung cancers molecularly. These techniques have been used successfully to differentiate lung cancer histotypes based on patterns of genes expressed. The use of protein analysis to this end has also been attempted, with limited correlation with RNA experiments. This likely reflects the limited sensitivity of the technologies and complex, poorly understood post-synthesis protein modifications. In any event, there have been great strides made in understanding the nature of lung cancer from a molecular perspective; these effects represent a great advancement in the diagnosis and prognosis of lung cancer. Moreover, these advances may lead to the improvement of patient survival by guiding the choice of more efficacious therapy.


Assuntos
Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/epidemiologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Progressão da Doença , Genoma , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/epidemiologia , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos
5.
Int J Oncol ; 39(2): 401-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21567086

RESUMO

A major goal of treatment strategies for cancer is the development of agents which can block primary tumor growth and development as well as the progression of tumor metastasis without any treatment associated side effects. Using mini peptide display (MPD) technology, we generated peptides that can bind to the human vascular endothelial growth factor (VEGF) receptor KDR. These peptides were evaluated for their ability to block angiogenesis, tumor growth and metastasis in vitro and in vivo. A D-amino acid peptide with high serum stability (ST100,059) was found to have the most potent activity in vitro as indicated by inhibition of VEGF stimulation of endothelial cells. It was also found to be the most active of the series in blocking VEGF-mediated activity in vivo, as measured in Matrigel-filled angioreactors implanted in mice. ST100,059 blocks VEGF-induced MAPK phosphorylation, as well as inhibits VEGF-induced changes in gene expression in HUVEC cells. In in vivo studies, treatment of female C57BL/6 mice inoculated with B16 mouse melanoma cells with ST100,059 resulted in a dose-dependent decrease in tumor volume and lung metastasis as compared to control groups of animals receiving vehicle alone. These studies demonstrate that by using MPD, peptides can be identified with enhanced affinity relative to those discovered using phage display. Based on these studies we have identified one such peptide ST100,059 which can effectively block tumor growth and metastasis due to its anti-angiogenic effects and ability to block intracellular signaling pathways involved in tumor progression.


Assuntos
Inibidores da Angiogênese/farmacologia , Melanoma Experimental/patologia , Neovascularização Patológica/metabolismo , Peptídeos/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Sequência de Aminoácidos , Inibidores da Angiogênese/química , Inibidores da Angiogênese/metabolismo , Animais , Bovinos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fatores de Crescimento Endotelial/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Biblioteca de Peptídeos , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Clin Cancer Res ; 15(19): 6167-76, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19789304

RESUMO

PURPOSE: The goal of this study was to investigate the therapeutic potential of a novel immunotherapy strategy resulting in immunity to localized or metastatic human papillomavirus 16-transformed murine tumors. EXPERIMENTAL DESIGN: Animals bearing E7-expressing tumors were coimmunized by lymph node injection with E7 49-57 antigen and TLR3-ligand (synthetic dsRNA). Immune responses were measured by flow cytometry and antitumor efficacy was evaluated by tumor size and survival. In situ cytotoxicity assays and identification of tumor-infiltrating lymphocytes and T regulatory cells were used to assess the mechanisms of treatment resistance in bulky disease. Chemotherapy with cyclophosphamide was explored to augment immunotherapy in late-stage disease. RESULTS: In therapeutic and prophylactic settings, immunization resulted in a considerable expansion of E7 49-57 antigen-specific T lymphocytes in the range of 1/10 CD8(+) T cells. The resulting immunity was effective in suppressing disease progression and mortality in a pulmonary metastatic disease model. Therapeutic immunization resulted in control of isolated tumors up to a certain volume, and correlated with antitumor immune responses measured in blood. In situ analysis showed that within bulky tumors, T-cell function was affected by negative regulatory mechanisms linked to an increase in T regulatory cells and could be overcome by cyclophosphamide treatment in conjunction with immunization. CONCLUSIONS: This study highlights a novel cancer immunotherapy platform with potential for translatability to the clinic and suggests its potential usefulness for controlling metastatic disease, solid tumors of limited size, or larger tumors when combined with cytotoxic agents that reduce the number of tumor-infiltrating T regulatory cells.


Assuntos
Papillomavirus Humano 16/fisiologia , Imunidade Celular/fisiologia , Imunoterapia/métodos , Linfonodos/imunologia , Neoplasias/patologia , Neoplasias/terapia , Animais , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Transformação Celular Viral/imunologia , Terapia Combinada , Citotoxinas/administração & dosagem , Feminino , Papillomavirus Humano 16/imunologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Neoplasias/imunologia , Neoplasias/prevenção & controle , Proteínas E7 de Papillomavirus/metabolismo , Carga Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA