RESUMO
Malaria is a parasitic disease that remains a global concern and the subject of many studies. Metabolomics has emerged as an approach to better comprehend complex pathogens and discover possible drug targets, thus giving new insights that can aid in the development of antimalarial therapies. However, there is no standardized method to extract metabolites from in vitro Plasmodium falciparum intraerythrocytic parasites, the stage that causes malaria. Additionally, most methods are developed with either LC-MS or NMR analysis in mind, and have rarely been evaluated with both tools. In this work, three extraction methods frequently found in the literature were reproduced and samples were analyzed through both LC-MS and 1H NMR, and evaluated in order to reveal which is the most repeatable and consistent through an array of different tools, including chemometrics, peak detection and annotation. The most reliable method in this study proved to be a double extraction with methanol and methanol/water (80:20, v/v). Metabolomic studies in the field should move towards standardization of methodologies and the use of both LC-MS and 1H NMR in order to make data more comparable between studies and facilitate the achievement of biologically interpretable information.
Assuntos
Antimaláricos , Malária , Humanos , Plasmodium falciparum/metabolismo , Espectrometria de Massa com Cromatografia Líquida , Cromatografia Líquida/métodos , Espectroscopia de Prótons por Ressonância Magnética , Metanol/metabolismo , Espectrometria de Massas em Tandem/métodos , Metabolômica/métodosRESUMO
INTRODUCTION: Human African trypanosomiasis, commonly known as sleeping sickness, is a vector-borne parasitic disease prevalent in sub-Saharan Africa and transmitted by the tsetse fly. Suramin, a medication with a long history of clinical use, has demonstrated varied modes of action against Trypanosoma brucei. This study employs a comprehensive workflow to investigate the metabolic effects of suramin on T. brucei, utilizing a multimodal metabolomics approach. OBJECTIVES: The primary aim of this study is to comprehensively analyze the metabolic impact of suramin on T. brucei using a combined liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance spectroscopy (NMR) approach. Statistical analyses, encompassing multivariate analysis and pathway enrichment analysis, are applied to elucidate significant variations and metabolic changes resulting from suramin treatment. METHODS: A detailed methodology involving the integration of high-resolution data from LC-MS and NMR techniques is presented. The study conducts a thorough analysis of metabolite profiles in both suramin-treated and control T. brucei brucei samples. Statistical techniques, including ANOVA-simultaneous component analysis (ASCA), principal component analysis (PCA), ANOVA 2 analysis, and bootstrap tests, are employed to discern the effects of suramin treatment on the metabolomics outcomes. RESULTS: Our investigation reveals substantial differences in metabolic profiles between the control and suramin-treated groups. ASCA and PCA analysis confirm distinct separation between these groups in both MS-negative and NMR analyses. Furthermore, ANOVA 2 analysis and bootstrap tests confirmed the significance of treatment, time, and interaction effects on the metabolomics outcomes. Functional analysis of the data from LC-MS highlighted the impact of treatment on amino-acid, and amino-sugar and nucleotide-sugar metabolism, while time effects were observed on carbon intermediary metabolism (notably glycolysis and di- and tricarboxylic acids of the succinate production pathway and tricarboxylic acid (TCA) cycle). CONCLUSION: Through the integration of LC-MS and NMR techniques coupled with advanced statistical analyses, this study identifies distinctive metabolic signatures and pathways associated with suramin treatment in T. brucei. These findings contribute to a deeper understanding of the pharmacological impact of suramin and have the potential to inform the development of more efficacious therapeutic strategies against African trypanosomiasis.
Assuntos
Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Humanos , Suramina/farmacologia , Suramina/metabolismo , Suramina/uso terapêutico , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia , Metabolômica/métodos , Trypanosoma brucei brucei/metabolismo , Fluxo de TrabalhoRESUMO
BACKGROUND: Trypanosoma brucei is the causative agent of Human African Trypanosomiasis (also known as sleeping sickness), a disease causing serious neurological disorders and fatal if left untreated. Due to its lethal pathogenicity, a variety of treatments have been developed over the years, but which have some important limitations such as acute toxicity and parasite resistance. Metabolomics is an innovative tool used to better understand the parasite's cellular metabolism, and identify new potential targets, modes of action and resistance mechanisms. The metabolomic approach is mainly associated with robust analytical techniques, such as NMR and Mass Spectrometry. Applying these tools to the trypanosome parasite is, thus, useful for providing new insights into the sleeping sickness pathology and guidance towards innovative treatments. AIM OF REVIEW: The present review aims to comprehensively describe the T. brucei biology and identify targets for new or commercialized antitrypanosomal drugs. Recent metabolomic applications to provide a deeper knowledge about the mechanisms of action of drugs or potential drugs against T. brucei are highlighted. Additionally, the advantages of metabolomics, alone or combined with other methods, are discussed. KEY SCIENTIFIC CONCEPTS OF REVIEW: Compared to other parasites, only few studies employing metabolomics have to date been reported on Trypanosoma brucei. Published metabolic studies, treatments and modes of action are discussed. The main interest is to evaluate the metabolomics contribution to the understanding of T. brucei's metabolism.
Assuntos
Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Descoberta de Drogas/métodos , Humanos , Metabolômica , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologiaRESUMO
Malaria is a parasitic disease that remains a global health issue, responsible for a significant death and morbidity toll. Various factors have impacted the use and delayed the development of antimalarial therapies, such as the associated financial cost and parasitic resistance. In order to discover new drugs and validate parasitic targets, a powerful omics tool, metabolomics, emerged as a reliable approach. However, as a fairly recent method in malaria, new findings are timely and original practices emerge frequently. This review aims to discuss recent research towards the development of new metabolomic methods in the context of uncovering antiplasmodial mechanisms of action in vitro and to point out innovative metabolic pathways that can revitalize the antimalarial pipeline.
Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária , Humanos , Antimaláricos/uso terapêutico , Malária/tratamento farmacológico , Descoberta de Drogas , Metabolômica , Antagonistas do Ácido Fólico/farmacologia , Plasmodium falciparum , Resistência a MedicamentosRESUMO
Poupartia borbonica is an endemic tree from the Mascarene Islands that belongs to the Anacardiaceae family. The leaves of this plant were phytochemically studied previously, and isolated alkyl cyclohexenone derivatives, poupartones Aâ-âC, demonstrated antiplasmodial and antimalarial activities. In addition to their high potency against the Plasmodium sp., high toxicity on human cells was also displayed. The present study aims to investigate in more detail the cytotoxicity and pharmacological interest of poupartone B, one of the most abundant derivatives in the leaves of P. borbonica. For that purpose, real-time live-cell imaging of different human cancer cell lines and normal fibroblasts, treated or not treated with poupartone B, was performed. A potent inhibition of cell proliferation associated with the induction of cell death was observed. A detailed morphological analysis of different adherent cell lines exposed to high concentrations of poupartone B (1â-â2 µg/mL) demonstrated that this compound induced an array of cellular alterations, including a rapid retraction of cellular protrusions associated with cell rounding, massive cytoplasmic vacuolization, loss of plasma membrane integrity, and plasma membrane bubbling, ultimately leading to paraptosis-like cell death. The structure-activity relation of this class of compounds, their selective toxicity, and pharmacological potential are discussed.
Assuntos
Anacardiaceae , Cicloexanonas/farmacologia , Extratos Vegetais , Anacardiaceae/química , Linhagem Celular Tumoral , Humanos , Neoplasias , Extratos Vegetais/farmacologia , Plasmodium falciparumRESUMO
Malaria is a parasitic disease endemic to tropical and subtropical regions responsible for hundreds of millions of clinical cases and hundreds of thousands of deaths yearly. Its agent, the Plasmodium sp., has a highly variable antigenicity, which accounts for the emergence and spread of resistance to all available treatments. In light of this rising problem, scientists have turned to naturally occurring compounds obtained from plants recurrently used in traditional medicine in endemic areas. Ethnopharmacological approaches seem to be helpful in selecting the most interesting plants for the search of new antiplasmodial and antimalarial molecules. However, this search for new antimalarials is complex and time-consuming and ultimately leads to a great number of interesting compounds with a lack of discussion of their characteristics. This review aims to examine the most promising antiplasmodial phenolic compounds (phenolic acids, flavonoids, xanthones, coumarins, lignans, among others) and derivatives isolated over the course of the last 28 y (1990â-â2018) and discuss their structure-activity relationships, mechanisms of action, toxicity, new perspectives they could add to the fight against malaria, and finally, the difficulties of transforming these potential compounds into new antimalarials.
Assuntos
Antimaláricos , Malária , Cumarínicos , Humanos , Plantas , Plasmodium falciparum , Relação Estrutura-AtividadeRESUMO
Trypanosoma brucei (Tb) is the causative agent of human African trypanosomiasis (HAT), also known as sleeping sickness, which can be fatal if left untreated. An understanding of the parasite's cellular metabolism is vital for the discovery of new antitrypanosomal drugs and for disease eradication. Metabolomics can be used to analyze numerous metabolic pathways described as essential to Tb. brucei but has some limitations linked to the metabolites' physicochemical properties and the extraction process. To develop an optimized method for extracting and analyzing Tb. brucei metabolites, we tested the three most commonly used extraction methods, analyzed the extracts by hydrophilic interaction liquid chromatography high-resolution mass spectrometry (HILIC LC-HRMS), and further evaluated the results using quantitative criteria including the number, intensity, reproducibility, and variability of features, as well as qualitative criteria such as the specific coverage of relevant metabolites. Here, we present the resulting protocols for untargeted metabolomic analysis of Tb. brucei using (HILIC LC-HRMS). © 2024 Wiley Periodicals LLC. Basic Protocol 1: Culture of Trypanosoma brucei brucei parasites Basic Protocol 2: Preparation of samples for metabolomic analysis of Trypanosoma brucei brucei Basic Protocol 3: LC-HRMS-based metabolomic data analysis of Trypanosoma brucei brucei.
Assuntos
Metabolômica , Trypanosoma brucei brucei , Trypanosoma brucei brucei/metabolismo , Metabolômica/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Tripanossomíase Africana/parasitologiaRESUMO
There are over 500 species of the genus Artemisia in the Asteraceae family distributed over the globe, with varying potentials to treat different ailments. Following the isolation of artemisinin (a potent anti-malarial compound with a sesquiterpene backbone) from Artemisia annua, the phytochemical composition of this species has been of interest over recent decades. Additionally, the number of phytochemical investigations of other species, including those of Artemisia afra in a search for new molecules with pharmacological potentials, has increased in recent years. This has led to the isolation of several compounds from both species, including a majority of monoterpenes, sesquiterpenes, and polyphenols with varying pharmacological activities. This review aims to discuss the most important compounds present in both plant species with anti-malarial properties, anti-inflammatory potentials, and immunomodulating properties, with an emphasis on their pharmacokinetics and pharmacodynamics properties. Additionally, the toxicity of both plants and their anti-malaria properties, including those of other species in the genus Artemisia, is discussed. As such, data were collected via a thorough literature search in web databases, such as ResearchGate, ScienceDirect, Google scholar, PubMed, Phytochemical and Ethnobotanical databases, up to 2022. A distinction was made between compounds involved in a direct anti-plasmodial activity and those expressing anti-inflammatory and immunomodulating activities or anti-fever properties. For pharmacokinetics activities, a distinction was made between compounds influencing bioavailability (CYP effect or P-Glycoprotein effect) and those affecting the stability of pharmacodynamic active components.
RESUMO
Malaria, a disease known for thousands of years and caused by parasites of the Plasmodium genus, continues to cause many deaths throughout the world today, particularly due to the emergence of parasite resistance to the current therapeutic arsenal. Plants of the Strychnos genus, remarkable due to their multiple traditional uses as well as their alkaloid content, are promising candidates to develop new antimalarial treatments. Indeed, previous research on this plant group has shown promising (≤ 5 µg/ml) or good (between 5 and 15 µg/ml) antiplasmodial activities. Using the chloroquine-sensitive strain of Plasmodium falciparum (3D7), and artemisinin as positive control, a screening of antiplasmodial activities from 43 crude methanolic extracts from 28 species of the Strychnos genus was carried out in three independent assays. A total of 12 extracts had good (6 extracts) or promising (6 extracts) antiplasmodial activities. These results allowed both to confirm known activities but also to detect new ones. These extracts were then analyzed by HPLC-ESI(+)-Q/TOF, and the processed MS/MS data allowed to generate a molecular network in which the antiplasmodial activities were implemented as metadata. The exploration of the molecular network revealed the presence of alkaloids still unknown, and potentially active against malaria, in particular alkaloids close to usambarensine and its derivatives. This study shows that the emergence of molecular networking offers new leads for identifications of alkaloids from the Strychnos genus. The presence of unknown alkaloids potentially active against malaria confirms all the interest to continue in studying the Strychnos genus. Bioassay- and mass-guided fractionations as well as various dereplication tools would allow to identify and characterize these interesting alkaloids further.
RESUMO
Bioassay-guided fractionation of the CH2Cl2-MeOH (1:1) leaves extract of Trichilia gilgiana, yielded two new vilasinin-type limonoids named gilgianin A (1) and gilgianin B (2), one new phenyl alkene derivative designated as gilgialkene A (3), along with six known compounds: rubescin H (4), TS3 (5), trichirubine A (6), sitosteryl-6'-O-undecanoate-ß-D-glucoside (7), scopoletin (8), and octadecane-2-one (9). Their structures were elucidated based on spectroscopic analysis and comparison with literature data. Compounds 5 and 6 exhibited the highest antiplasmodial activity with IC50 values of 1.14 and 1.32 µM respectively. Moreover, compound 5 was very cytotoxic with CC50 value of 0.88 µM, compared to compound 6, which was not cytotoxic (CC50 > 10 µg/mL). Compounds 1 (IC50 = 9.84 µM), 2 (IC50 = 11.04 µM) and 4 (IC50 = 10.71 µM) presented good antiplasmodial activity while also exhibiting significant cytotoxicity, with CC50 values ranging from of 14.45 to 29.7 µM.[Formula: see text].
Assuntos
Antimaláricos , Limoninas , Meliaceae , Alcenos , Antimaláricos/química , Antimaláricos/farmacologia , Bioensaio , Glucosídeos , Limoninas/química , Limoninas/farmacologia , Meliaceae/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plasmodium falciparum , EscopoletinaRESUMO
Vector-borne diseases cause more than 1 million deaths annually. The research into new medicines is urgent, especially as there is currently no specific treatment. In this study, the authors have selected 64 endemic plants from the Mascarene Islands based on their endemism, their medicinal use and their registration in the French Pharmacopeia to evaluate the antiplasmodial, anti-chikungunya and antioxidant activities. The list of these 64 plants including their local name, population, data of collection and voucher number are available in the Supporting Information. Forty active extracts were identified from the 38 species: 22 responded positively to the antiplasmodial activity, 8 to the anti-chikungunya activity and 8 to the antioxidant activity. Six plants demonstrated high antiplasmodial activity (concentration inhibiting 50% of parasitic growth (IC50) <5 µg/mL): Casearia coriaceae, Monimia rotundifolia, Poupartia borbonica, Psiadia retusa, Vernonia fimbrillifera and Zanthoxylum heterophyllum; and five showed high anti-chikungunya activity (IC50<20 µg/mL): Aphloia theiformis, Stillingia lineata, Croton mauritianus, Indigofera ammoxylum, and Securinega durissima. Eight plants displayed an important antioxidant activity, with values of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP) or oxygen Radical Absorbance Capacity (ORAC) >2000 µM of Trolox equivalent per mg/mL of extract: Bertiera borbonica, Erythroxylon laurifolium, Erythroxylon sideroxyloides, I. ammoxylum, P. borbonica, Scolopia heterophylla, Sophora denudata, and Terminalia bentzoe. Some data obtained tend to corroborate the reported traditional use of the plant, such as Z. heterophyllum (antiplasmodial), A. theiformis (anti-chikungunya), and E. laurifolium (antioxidant).