Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 29(Pt 2): 515-521, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35254316

RESUMO

Synchrotron radiation provides the necessary spatial and temporal resolution for non-invasive operando studies of dynamic processes under complex environmental conditions. Here a new environmental cell for simultaneous in situ dynamic X-ray imaging and measuring acoustic properties of geological samples is presented. The primary purpose of this cell is to study gas-hydrate formation in porous geo-materials and its influence on their acoustic properties. The cell is designed for cylindrical samples of 9 mm in diameter, confining and pore pressures up to 12 MPa, and temperatures from -20°C to room temperature. The cell is portable and can be easily assembled and operated at different X-ray sources. This cell enables a wide range of experiments studying physical/chemical processes in the Earth subsurface that change the mechanical properties of rocks (geochemical reactions, phase transitions, etc.).

2.
Entropy (Basel) ; 22(7)2020 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-33286482

RESUMO

Experiments on the dissociation of a mixed gas hydrate in various combustion methods are performed. The simultaneous influence of two determining parameters (the powder layer thickness and the external air velocity) on the efficiency of dissociation is studied. It has been shown that for the mixed hydrate, the dissociation rate under induction heating is 10-15 times higher than during the burning of a thick layer of powder, when the combustion is realized above the layer surface. The minimum temperature required for the initiation of combustion for different combustion methods was studied. As the height of the sample layer increases, the rate of dissociation decreases. The emissions of NOx and CO for the composite hydrate are higher than for methane hydrate at the same temperature in a muffle furnace. A comparison of harmful emissions during the combustion of gas hydrates with various types of coal fuels is presented. NOx concentration as a result of the combustion of gas hydrates is tens of times lower than when burning coal fuels. Increasing the temperature in the muffle furnace reduces the concentration of combustion products of gas hydrates.

3.
Polymers (Basel) ; 15(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37242887

RESUMO

Polymeric models of the core prepared with a Raise3D Pro2 3D printer were employed for methane hydrate formation. Polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), carbon fiber reinforced polyamide-6 (UltraX), thermoplastic polyurethane (PolyFlex), and polycarbonate (ePC) were used for printing. Each plastic core was rescanned using X-ray tomography to identify the effective porosity volumes. It was revealed that the polymer type matters in enhancing methane hydrate formation. All polymer cores except PolyFlex promoted the hydrate growth (up to complete water-to-hydrate conversion with PLA core). At the same time, changing the filling degree of the porous volume with water from partial to complete decreased the efficiency of hydrate growth by two times. Nevertheless, the polymer type variation allowed three main features: (1) managing the hydrate growth direction via water or gas preferential transfer through the effective porosity; (2) the blowing of hydrate crystals into the volume of water; and (3) the growth of hydrate arrays from the steel walls of the cell towards the polymer core due to defects in the hydrate crust, providing an additional contact between water and gas. These features are probably controlled by the hydrophobicity of the pore surface. The proper filament selection allows the hydrate formation mode to be set for specific process requirements.

4.
Sci Rep ; 13(1): 4440, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932173

RESUMO

Molecular and stable isotope compositions of hydrate-bound gases collected from 59 hydrate-bearing sites between 2005 to 2019 in the southern and central sub-basins of Lake Baikal are reported. The δ2H of the hydrate-bound methane is distributed between - 310‰ and - 270‰, approximately 120‰ lower than its value in the marine environment, due to the difference in δ2H between the lake water and seawater. Hydrate-bound gases originate from microbial (primary and secondary), thermogenic, and mixed gas sources. Gas hydrates with microbial ethane (δ13C: - 60‰, δ2H: between - 310‰ and - 250‰) were retrieved at approximately one-third of the total sites, and their stable isotope compositions were lower than those of thermogenic ethane (δ13C: - 25‰, δ2H: - 210‰). The low δ2H of ethane, which has rarely been reported, suggests for the first time that lake water with low hydrogen isotope ratios affects the formation process of microbial ethane as well as methane. Structure II hydrates containing enclathrated methane and ethane were collected from eight sites. In thermogenic gas, hydrocarbons heavier than ethane are biodegraded, resulting in a unique system of mixed methane-ethane gases. The decomposition and recrystallization of the hydrates that enclathrate methane and ethane resulted in the formation of structure II hydrates due to the enrichment of ethane.

5.
Chemphyschem ; 12(13): 2476-84, 2011 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-21717564

RESUMO

Experimental data on the pressure dependence of unit cell parameters for the gas hydrates of ethane (cubic structure I, pressure range 0-2 GPa), xenon (cubic structure I, pressure range 0-1.5 GPa) and the double hydrate of tetrahydrofuran+xenon (cubic structure II, pressure range 0-3 GPa) are presented. Approximation of the data using the cubic Birch-Murnaghan equation, P=1.5B(0)[(V(0)/V)(7/3)-(V(0)/V)(5/3)], gave the following results: for ethane hydrate V(0)=1781 Å(3) , B(0)=11.2 GPa; for xenon hydrate V(0)=1726 Å(3) , B(0)=9.3 GPa; for the double hydrate of tetrahydrofuran+xenon V(0)=5323 Å(3) , B(0)=8.8 GPa. In the last case, the approximation was performed within the pressure range 0-1.5 GPa; it is impossible to describe the results within a broader pressure range using the cubic Birch-Murnaghan equation. At the maximum pressure of the existence of the double hydrate of tetrahydrofuran+xenon (3.1 GPa), the unit cell volume was 86% of the unit cell volume at zero pressure. Analysis of the experimental data obtained by us and data available from the literature showed that 1) the bulk modulus of gas hydrates with classical polyhedral structures, in most cases, are close to each other and 2) the bulk modulus is mainly determined by the elasticity of the hydrogen-bonded water framework. Variable filling of the cavities with guest molecules also has a substantial effect on the bulk modulus. On the basis of the obtained results, we concluded that the bulk modulus of gas hydrates with classical polyhedral structures and existing at pressures up to 1.5 GPa was equal to (9±2) GPa. In cases when data on the equations of state for the hydrates were unavailable, the indicated values may be recommended as the most probable ones.


Assuntos
Gases/química , Água/química , Etano/química , Furanos/química , Pressão , Temperatura , Xenônio/química
6.
Pharm Res ; 28(12): 3116-27, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21671136

RESUMO

PURPOSE: To develop a technique of obtaining monoclinic polymorph of paracetamol suitable for direct compression without excipients. METHODS: Preparation of spongy monoclinic paracetamol was based on quench-cooling of paracetamol solutions in water-acetone mixtures sprayed into a vessel with liquid nitrogen followed by removal of solvents by freeze-drying. X-ray powder diffraction was used to study annealing of quench-cooled solutions in "paracetamol-acetone-water" and "acetone-water" systems and to find optimum conditions for obtaining fine particles of pure monoclinic paracetamol. Samples were characterized by electron microscopy; compression properties were measured. RESULTS: The preparation technique gave fine monoclinic paracetamol powder containing agglomerates (30-200 µm) composed of flat particles (linear sizes 1-10 µm, the thickness 60-150 nm). The spongy sample was suitable for direct compression without excipients, stable on storage, and mechanically robust. Mechanically stable tablets pressed from the spongy sample were better soluble in water than commercially available tablets of paracetamol with excipients. CONCLUSIONS: The proposed method gave spongy monoclinic paracetamol samples with improved properties. For inexpensive paracetamol, the method may not yield economic advantage. However, the same method based on freeze-drying solutions in mixed aqueous-organic solvents can be used to prepare new improved forms of other molecular solids for pharmaceutical applications.


Assuntos
Acetaminofen/química , Analgésicos não Narcóticos/química , Química Farmacêutica/métodos , Acetona/química , Liofilização , Porosidade , Difração de Pó , Solventes/química , Água/química , Difração de Raios X
7.
Sci Rep ; 10(1): 14747, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32901048

RESUMO

We reported the characteristics of hydrate-bound hydrocarbons in lake-bottom sediments at the Kedr mud volcano in Lake Baikal. Twenty hydrate-bearing sediment cores were retrieved, and methane-stable isotopes of hydrate-bound gases (δ13C and δ2H of - 47.8‰ to - 44.0‰ V-PDB and - 280.5‰ to - 272.8‰ V-SMOW, respectively) indicated their thermogenic origin accompanied with secondary microbial methane. Powder X-ray diffraction patterns of the crystals and molecular composition of the hydrate-bound gases suggested that structure II crystals showed a high concentration of ethane (around 14% of hydrate-bound hydrocarbons), whereas structure I crystals showed a relatively low concentration of ethane (2-5% of hydrate-bound hydrocarbons). These different crystallographic structures comprised complicated layers in the sub-lacustrine sediment, suggesting that the gas hydrates partly dissociate, concentrate ethane and form structure II crystals. We concluded that a high concentration of thermogenic ethane primarily controls the crystallographic structure of gas hydrates and that propane, iso-butane (2-methylpropane) and neopentane (2,2-dimethylpropane) are encaged into crystals in the re-crystallisation process.

8.
J Phys Chem B ; 113(17): 5760-8, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19344169

RESUMO

The structure of clathrate hydrates with tetraisoamylammonium polyacrylate salt incorporated as guest has been studied in this work. Also, quantitative studies on the stability changes of the clathrate hydrates with different degrees of cross-linking of the guest polymer (varied from 0 to 3%) have been conducted. A single crystal X-ray diffraction study of a crystal of the hydrate with linear (uncross-linked) tetraisoamylammonium polyacrylate as guest reveals a hexagonal structure (space group P6m2, a = 12.15 A, c =12.58 A at 100 K) with 39 host framework water molecules per one guest monomeric unit. Powder X-ray diffraction analyses confirm the identity of the above crystal structure of the hydrate with linear guest polymer and the crystal structure of the hydrates with cross-linked guest (hexagonal, a = 12.25 A, c =12.72 A at 276 K). In order to quantitatively determine the stability differences of the hydrates with the included guests having various degrees of cross-linking of the anionic chain, a series of differential scanning calorimetry measurements of the fusion enthalpy of the hydrate samples has been carried out. On the basis of the results obtained, a structural model describing the decrease in the stability of the clathrate hydrates with tetraisoamylammonium polyacrylate guest as a function of the degree of cross-linking of the guest polymer has been suggested.


Assuntos
Resinas Acrílicas/química , Compostos de Amônio Quaternário/química , Calorimetria , Difração de Pó , Temperatura , Água/química , Difração de Raios X
9.
J Phys Chem B ; 111(44): 12795-8, 2007 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-17944503

RESUMO

Pressure-temperature (P-T) conditions of the decomposition reaction of the structure H high-pressure methane hydrate to the cubic structure I methane hydrate and fluid methane were studied with a piston-cylinder apparatus at room temperature. For the first time, volume changes accompanying this reaction were determined. With the use of the Clausius-Clapeyron equation the enthalpies of the decomposition reaction of the structure H high-pressure methane hydrate to the cubic structure I methane hydrate and fluid methane have been calculated.

10.
J Phys Chem B ; 111(38): 11214-20, 2007 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-17803298

RESUMO

Phase equilibria in the system H2-CH4-H2O are investigated by means of differential thermal analysis within hydrogen concentration range 0-70 mol % and at a pressure up to 250 MPa. All the experiments were carried out under the conditions of gas excess. With an increase in hydrogen concentration in the initial gas mixture, decomposition temperature of the formed hydrates decreased. X-ray diffraction patterns and Raman spectra of the quenched hydrate samples obtained at a pressure of 20 MPA from a gas mixture containing 40 mol % hydrogen were recorded. It turned out that the hydrate has cubic structure I under these conditions. The Raman spectra showed that hydrogen molecules are not detected in the hydrate within the sensitivity of the method, that is, almost pure methane hydrate is formed. The general view of the phase diagram of the investigated system is proposed. A thermodynamic model was proposed to explain a decrease in hydrate decomposition temperature in the system with an increase in the concentration of hydrogen in the initial mixture.

11.
J Phys Chem B ; 121(18): 4900-4908, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28422511

RESUMO

In the present work, we studied semiclathrate hydrates in the TBPO-H2O and TBPO-H2O-CH4 systems. The stoichiometry, temperature, and enthalpy of dissociation of TBPO semiclathrate hydrate crystals formed in the TBPO-H2O binary system were found to be TBPO·33.6 ± 0.9H2O, 280.0 K, and 253.1 ± 4.7 J g-1, respectively. The crystal structure determined by single crystal XRD analysis (150 K) was the orthorhombic with space group Pbam and unit cell parameters a = 19.9313(8) Å, b = 23.4660(7) Å, and c = 12.1127(5) Å. The structural stoichiometry is TBPO·34.5H2O. The TBPO guest molecules arrangement within the host water framework has been refined for the first time. The discrepancy between the analytically measured and structural stoichiometry is likely to be attributed to the structure defects, which cannot be revealed by the routine single-crystal XRD analysis. The methane capacity of TBPO + CH4 double hydrate was measured by the thermovolumetric method in the range 14.9-55.8 wt % TBPO aqueous solution at a methane pressure of 8.5 ± 0.5 MPa and temperature of 274 ± 1 and 286 ± 1 K. The maximum included methane volumes of 61.6-74.6 mL/g were observed for the TBPO + CH4 double hydrates synthesized from ∼26-30 wt % TBPO aqueous solutions. Powder X-ray diffraction measurements of the hydrate samples used in the thermovolumetric experiments revealed that the TBPO + CH4 double hydrate has the same structural characteristics as the simple TBPO hydrate. The study of the Raman spectra of the TBPO + CH4 double hydrate and TBPO simple hydrate showed that in the TBPO + CH4 double hydrate CH4 molecules selectively occupy the small D cages. The results of the present study did not confirm the earlier suggestion of the formation of several structural types of hydrates in the TBPO-H2O system. The obtained results indicate that the TBPO-H2O binary system has a potential for application in gas separation and as cold storage and transportation media.

12.
J Phys Chem B ; 110(6): 2840-6, 2006 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-16471893

RESUMO

For the first time, the compositions of argon and methane high-pressure gas hydrates have been directly determined. The studied samples of the gas hydrates were prepared under high-pressure conditions and quenched at 77 K. The composition of the argon hydrate (structure H, stable at 460-770 MPa) was found to be Ar.(3.27 +/- 0.17)H(2)O. This result shows a good agreement with the refinement of the argon hydrate structure using neutron powder diffraction data and helps to rationalize the evolution of hydrate structures in the Ar-H(2)O system at high pressures. The quenched argon hydrate was found to dissociate in two steps. The first step (170-190 K) corresponds to a partial dissociation of the hydrate and the self-preservation of a residual part of the hydrate with an ice cover. Presumably, significant amounts of ice Ic form at this stage. The second step (210-230 K) corresponds to the dissociation of the residual part of the hydrate. The composition of the methane hydrate (cubic structure I, stable up to 620 MPa) was found to be CH(4).5.76H(2)O. Temperature dependence of the unit cell parameters for both hydrates has been also studied. Calculated from these results, the thermal expansivities for the structure H argon hydrate are alpha(a) = 76.6 K(-1) and alpha(c) = 77.4 K(-1) (in the 100-250 K temperature range) and for the cubic structure I methane hydrate are alpha(a) = 32.2 K(-1), alpha(a) = 53.0 K(-1), and alpha(a) = 73.5 K(-1) at 100, 150, and 200 K, respectively.

13.
J Phys Chem B ; 110(43): 21788-92, 2006 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-17064141

RESUMO

Dissociation temperatures of gas hydrate formed in the ethane-water system were studied at pressures up to 1500 MPa. In situ neutron diffraction analysis and X-ray diffraction analysis in a diamond anvil cell showed that the gas hydrate formed in the ethane-water system at 340, 700, and 1840 MPa and room temperature belongs to the cubic structure I (CS-I). Raman spectra of C-C vibrations of ethane molecules in the hydrate phase, as well as the spectra of solid and liquid ethane under high-pressure conditions were studied at pressures up to 6900 MPa. Within 170-3600 MPa Raman shift of the C-C vibration mode of ethane in the hydrate phase did not show any discontinuities, which could be evidence of possible phase transformations. The upper pressure boundary of high-pressure hydrate existence was discovered at the pressure of 3600 MPa. This boundary corresponds to decomposition of the hydrate to solid ethane and ice VII. The type of phase diagram of ethane-water system was proposed in the pressure range of hydrate formation (0-3600 MPa).

14.
J Phys Chem B ; 117(25): 7756-62, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23731052

RESUMO

The solubility of helium in ice Ih has been examined both experimentally and theoretically. It has been demonstrated that the calculations are in good accord with the experimental data. The tested calculation method has been used for deriving the helium solubility in ice Ih at pressures up to 2000 bar and at temperatures of 0-50 °C. Obtained data may be useful in some practical applications (storage of enriched with helium natural gas in permafrost, extraction of helium from natural gas).

15.
J Phys Chem B ; 117(9): 2796-806, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23383955

RESUMO

In this work, physicochemical and structural studies have been carried out for semiclathrate hydrates of linear (un-cross-linked) and cross-linked tetrabutylammonium polyacrylates with different degrees of cross-linking of the polymeric guest molecules (n = 0.5, 1, 2, 3%) and different degrees of substitution of proton ions of carboxylic groups in poly(acrylic acid) for TBA cations (x = 1, 0.8, 0.6). The changes in the hydrates' stability and composition depending on the outlined parameters were examined in the course of phase diagram studies of the binary systems water-tetrabutylammonium polyacrylates using differential thermal analysis method and calorimetric measurements of fusion enthalpies of the hydrates. Phase diagram studies of the binary system water-linear tetrabutylammonium polyacrylate revealed the formation of four hydrates. Based on the data of chemical analysis of hydrate crystals the compositions of all hydrates have been determined. Single-crystal X-ray diffraction studies revealed a tetragonal structure, space group 4/m, and unit cell parameters are close for different hydrates and lie in the ranges a = 23.4289-23.4713 Å and c = 12.3280-12.3651 Å (150 K). The structure can be related to tetragonal structure I typical for the clathrate hydrates of tetraalkylammonium salts with monomeric anions. Powder X-ray diffraction analyses confirmed the identity of the above crystal structure to that of the hydrates with cross-linked tetrabutylammonium polyacrylates. The behavior of TBA polyacrylate hydrates under the pressure of methane was studied and quantitative assessment of the gas content in the hydrates was made using volumetric analysis method.

16.
J Phys Chem B ; 117(36): 10677-85, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-23947486

RESUMO

In the present work, characteristic properties of tetrabutylammonium bromide (TBAB) ionic clathrate hydrates structures were studied by single-crystal X-ray structure analysis. The structures of three different tetragonal TBAB ionic clathrate hydrates that were formed in our experiments were based on the same water lattice of tetragonal structure I (TS-I) differing in the ways of including bromide anions and arranging tetrabutylammonium cations. We demonstrated that (1) Br(-) can be included into the water lattice, replacing two water molecules, (2) the butyl group of the cation can be inserted not only in large T and P cavities but also in small D cavities of the water lattice TS-I, and (3) one of the reasons for polytypism of ionic clathrate hydrates on the basis of TS-I is the occurrence of alternative modes of arrangements of four-compartment cavities in adjacent layers of the water framework. The compositions of three TBAB ionic clathrate hydrates TBAB·38.1H2O, TBAB·32.5H2O, and TBAB·26.4H2O were determined by chemical analysis, and their enthalpies of fusion were measured by differential scanning calorimetry (DSC). From the obtained results, the enthalpies of the TBAB hydrate formation from TBAB and water were calculated thermodynamically.

17.
J Phys Chem B ; 115(31): 9564-9, 2011 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-21707093

RESUMO

Volume changes corresponding to transitions between different phases of high-pressure argon gas hydrates were studied with a piston-cylinder apparatus at room temperature. Combination of these data with the data taken from the literature allowed us to obtain self-consistent set of data concerning the equations of state and compositions of the high-pressure hydrates of argon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA