Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Chemistry ; 29(59): e202301669, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37522387

RESUMO

Platinum complexes are ubiquitous in chemistry and largely used as catalysts or as precursors in drug chemistry, thus a deep knowledge of their electronic properties may help in planning new synthetic strategies or exploring new potential applications. Herein, the electronic structure of many octahedral platinum complexes is drastically revised especially when they feature electronegative elements such as halogens and chalcogens. The investigation revealed that in most cases the five d platinum orbitals are invariably full, thus the empty antibonding orbitals, usually localized on the metal, are mainly centered on the ligands, suggesting a questionable assignment of formal oxidation state IV. The analysis supports the occurrence of the inverted ligand field theory in all cases with the only exceptions of the Pt-F and Pt-O bonding. The trends for the molecular complexes are mirrored also by the density of states plots of extended structures featuring octahedral platinum moieties in association with chalcogens atoms. Finally, the oxidative addition of a Se-Cl linkage to a square platinum complex to achieve an octahedral moiety has been revised in the framework of the inverted ligand field.

2.
Chemistry ; 29(70): e202302642, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37720981

RESUMO

CO2 catalytic hydrogenation to formate was achieved (TONmax =ca. 3800) in the presence of the neutral, halide-free, coordinatively saturated tris(carbonyl) manganese pincer-type complex [Mn(PNP)(CO)3 ], bearing a diarylamido pincer-type PNP ligand, using DBU as base and LiOTf as Lewis acid additive, under mild reaction conditions (60 bar, 80 °C). DFT calculations suggest that the precatalyst activation key step occurs by intermolecular, base assisted dihydrogen heterolytic splitting rather than by the expected ligand-assisted intramolecular MLC-type mechanism.

3.
Chemistry ; 29(1): e202202729, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36194105

RESUMO

The protonation of commercially available porphyrin ligands yields a class of bifunctional catalysts able to promote the synthesis of N-alkyl oxazolidinones by CO2 cycloaddition to corresponding aziridines. The catalytic system does not require the presence of any Lewis base or additive, and shows interesting features both in terms of cost effectiveness and eco-compatibility. The metal-free methodology is active even with a low catalytic loading of 1 % mol, and the chemical stability of the protonated porphyrin allowed it to be recycled three times without any decrease in performance. In addition, a DFT study was performed in order to suggest how a simple protonated porphyrin can mediate CO2 cycloaddition to aziridines to yield oxazolidinones.


Assuntos
Aziridinas , Oxazolidinonas , Porfirinas , Dióxido de Carbono , Metais
4.
Inorg Chem ; 62(2): 694-705, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36602377

RESUMO

N,N'-Dialkylpiperazine-2,3-dithiones (R2pipdt) were recognized as a class of hexa-atomic cyclic dithiooxamide ligands with peculiar charge-transfer donor properties toward soft electron-acceptors such as noble metal cations and diiodine. The latter interaction is nowadays better described as halogen bonding. In the reaction with diiodine, R2pipdt unexpectedly provides the corresponding triiodide salts, differently from the other dithiooxamides, which instead typically achieve ligand·nI2 halogen-bonded adducts. In this paper, we report a combined experimental and theoretical study that allows elucidation of the nature of the cited products and the reasons behind the unpredictable behavior of these ligands. Specifically, low-temperature single-crystal X-ray diffraction measurements on a series of synthetically obtained R2pipdt (R = Me, iPr, Bz)/I3 salts, complemented by neutron diffraction experiments, were able to experimentally highlight the formation of [R2pipdtH]+ cations with a -S-H bond on the dithionic moiety. Differently, with R = Ph, a benzothiazolylium cation, resulting from an intramolecular condensation reaction of the ligand, is obtained. Based on density functional theory (DFT) calculations, a reasonable reaction mechanism where diiodine plays the fundamental role of promoting a halogen-bonding-mediated radical reaction has been proposed. In addition, the comparison of combined experimental and computational results with the corresponding reactions of N,N'-dialkylperhydrodiazepine-2,3-dithione (R2dazdt, a hepta-atomic cyclic dithiooxamide), which provide neutral halogen-bonded adducts, pointed out that the difference in the torsion angle of the free ligands represents the structural key factor in determining the different reactivities of the two systems.

5.
Inorg Chem ; 61(8): 3527-3539, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35166538

RESUMO

Coinage metal cyclic trinuclear compounds (CTCs) are an emerging class of metal coordination compounds that are valuable for many fine optoelectronic applications, even though the reactivity dependence by the different bridging ligands remains somewhat unclear. In this work, to furnish some hints to unravel the effect of substituents on the chemistry of Au(I) CTCs made of a specific class of bridging ligand, we have considered two imidazolate Au(I) CTCs and the effect of different substituents on the pyrrolic N atoms relative to classic metal oxidations with I2 or by probing electrophilic additions. Experimental suggestions depict a thin borderline between the addition of MeI to the N-methyl or N-benzyl imidazolyl CTCs, which afford the oxidized CTC in the former and the ring opening of the CTC and the formation of carbene species in the latter. Moreover, the reactions with iodine yield to the oxidation of the metal centers for the former and just of a metal center in the latter, even in molar excess of iodine. The analysis of the bond distances in the X-ray crystal structures of the oxidized highlights that Au(III)-C and Au(III)-N bonds are longer than observed for Au(I)-C and Au(I)-N bonds, as formally not expected for Au(III) centers. Computational studies converge on the attribution of these discrepancies to an additional case of inverted ligand field (ILF), which solves the question with a new interpretation of the Au(I)-ligand bonding in the oxidized CTCs, which furnishes a new interpretation of the Au(I)-ligand bonding in the oxidized CTCs, opening a discussion about addition/oxidation reactions. Finally, the theoretical studies outputs depict energy profiles that are compatible with the experimental results obtained in the reaction of the two CTCs toward the addition of I2, MeI, and HCl.

6.
Inorg Chem ; 61(8): 3484-3492, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35175757

RESUMO

Gold chemistry has experienced in the last decades exponential attention for a wide spectrum of chemical applications, but the +3 oxidation state, traditionally assigned to gold, remains somewhat questionable. Herein, we present a detailed analysis of the electronic structure of the pentanuclear bow tie Au/Fe carbonyl cluster [Au{η2-Fe2(CO)8}2]- together with its two one-electron reversible reductions. A new interpretation of the bonding pattern is provided with the help of inverted ligand field theory. The classical view of a central gold(III) interacting with two [Fe2(CO)8]2- units is replaced by Au(I), with a d10 gold configuration, with two interacting [Fe2(CO)8]- fragments. A d10 configuration for the gold center in the compound [Au{η2-Fe2(CO)8}2]- is confirmed by the LUMO orbital composition, which is mainly localized on the iron carbonyl fragments rather than on a d gold orbital, as expected for a d8 configuration. Upon one-electron stepwise reduction, the spectroelectrochemical measurements show a progressive red shift in the carbonyl stretching, in agreement with the increased population of the LUMO centered on the iron units. Such a trend is also confirmed by the X-ray structure of the direduced compound [Au{η1-Fe2(CO)8}{η2-Fe2(CO)6(µ-CO)2}]3-, featuring the cleavage of one Au-Fe bond.

7.
J Am Chem Soc ; 143(27): 10088-10098, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34185506

RESUMO

The chemical functionalization of 2D exfoliated black phosphorus (2D BP) continues to attract great interest, although a satisfactory structural characterization of the functionalized material has seldom been achieved. Herein, we provide the first complete structural characterization of 2D BP functionalized with rare discrete Pd2 units, obtained through a mild decomposition of the organometallic dimeric precursor [Pd(η3-C3H5)Cl]2. A multitechnique approach, including HAADF-STEM, solid-state NMR, XPS, and XAS, was used to study in detail the morphology of the palladated nanosheets (Pd2/BP) and to unravel the coordination of Pd2 units to phosphorus atoms of 2D BP. In particular, XAS, backed up by DFT modeling, revealed the existence of unprecedented interlayer Pd-Pd units, sandwiched between stacked BP layers. The preliminary application of Pd2/BP as a catalyst for the hydrogen evolution reaction (HER) in acidic medium highlighted an activity increase due to the presence of Pd2 units.

8.
Chemistry ; 25(72): 16591-16605, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31626355

RESUMO

A symbiotic experimental/computational study analyzed the Ru(TPP)(NAr)2 -catalyzed one-pot formation of indoles from alkynes and aryl azides. Thirty different C3 -substituted indoles were synthesized and the best performance, in term of yields and regioselectivities, was observed when reacting ArC≡CH alkynes with 3,5-(EWG)2 C6 H3 N3 azides, whereas the reaction was less efficient when using electron-rich aryl azides. A DFT analysis describes the reaction mechanism in terms of the energy costs and orbital/electronic evolutions; the limited reactivity of electron-rich azides was also justified. In summary, PhC≡CH alkyne interacts with one NAr imido ligand of Ru(TPP)(NAr)2 to give a residually dangling C(Ph) group, which, by coupling with a C(H) unit of the N-aryl substituent, forms a 5+6 bicyclic molecule. In the process, two subsequent spin changes allow inverting the conformation of the sp2 C(Ph) atom and its consequent electrophilic-like attack to the aromatic ring. The bicycle isomerizes to indole via a two-step outer sphere H-migration. Eventually, a 'Ru(TPP)(NAr)' mono-imido active catalyst is reformed after each azide/alkyne reaction.

9.
Chemistry ; 25(25): 6300-6305, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-30883971

RESUMO

The reactivity of ruthenium and manganese complexes bearing intact white phosphorus in the coordination sphere was investigated towards the low-valent transition-metal species [Cp'''Co] (Cp'''=η5 -C5 H2 -1,2,4-tBu3 ) and [L0 M] (L0 =CH[CHN(2,6-Me2 C6 H3 )]2 ; M=Fe, Co). Remarkably, and irrespective of the metal species, the reaction proceeds by the selective cleavage of two P-P edges and the formation of a square-planar cyclo-P4 ligand. The reaction products [{CpRu(PPh3 )2 }{CoCp'''}(µ,η1:4 -P4 )][CF3 SO3 ] (5), [{CpBIG Mn(CO)2 }2 {CoCp'''}(µ,η1:1:4 -P4 )] (6) and [{CpBIG Mn(CO)2 }2 {ML0 }(µ,η1:1:4 -P4 )] (CpBIG =C5 (C6 H4 nBu)5 ; L0 =CH[CHN(2,6-Me2 C6 H3 )]2 ; M=Fe (7 a), Co (7 b)), respectively, were fully characterized by single-crystal X-ray diffraction and spectroscopic methods. The electronic structure of the cyclo-P4 ligand in the complexes 5-7 is best described as a π-delocalized P4 2- system, which is further stabilized by two and three metal moieties, respectively. DFT calculations envisaged a potential intermediate in the reaction to form 5, in which a quasi-butterfly-shaped P4 moiety bridges the two metals and behaves as an η3 -coordinated ligand towards the cobalt center.

10.
Eur J Inorg Chem ; 2019(11-12): 1476-1494, 2019 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31007576

RESUMO

Phosphorene, the 2D material derived from black phosphorus, has recently attracted a lot of interest for its properties, suitable for applications in materials science. The physical features and the prominent chemical reactivity on its surface render this nanolayered substrate particularly promising for electrical and optoelectronic applications. In addition, being a new potential ligand for metals, it opens the way for a new role of the inorganic chemistry in the 2D world, with special reference to the field of catalysis. The aim of this review is to summarize the state of the art in this subject and to present our most recent results in the preparation, functionalization, and use of phosphorene and its decorated derivatives. We discuss several key points, which are currently under investigation: the synthesis, the characterization by theoretical calculations, the high pressure behavior of black phosphorus, as well as its decoration with nanoparticles and encapsulation in polymers. Finally, device fabrication and electrical transport measurements are overviewed on the basis of recent literature and the new results collected in our laboratories.

11.
Inorg Chem ; 57(9): 4824-4827, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29644857

RESUMO

Cationic phosphametallocene-based platinum(II) aqua complexes were used as efficient precatalysts for the hydrolysis of aromatic and aliphatic tertiary phosphites under neutral reaction conditions at room temperature, leading to the selective cleavage of one P-O bond of the phosphite. NMR labeling experiments combined with stoichiometric model reactions and theoretical density functional theory calculations, performed with the appropriate model compounds, shed light on the operative catalytic cycle, which comprises intramolecular water molecule transfer to the cis-coordinated phosphite molecule.

12.
Chem Rev ; 116(14): 8173-92, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27398715

RESUMO

We begin with a brief historical review of the development of our understanding of the normal ordering of nd orbitals of a transition metal interacting with ligands, the most common cases being three below two in an octahedral environment, two below three in tetrahedral coordination, and four below one in a square-planar environment. From the molecular orbital construction of these ligand field splittings evolves a strategy for inverting the normal order: the obvious way to achieve this is to raise the ligand levels above the metal d's; that is, make the ligands better Lewis bases. However, things are not so simple, for such metal/ligand level placement may lead to redox processes. For 18-electron octahedral complexes one can create the inverted situation, but it manifests itself in the makeup of valence orbitals (are they mainly on metal or ligands?) rather than energy. One can also see the effect, in small ways, in tetrahedral Zn(II) complexes. We construct several examples of inverted ligand field systems with a hypothetical but not unrealistic AlCH3 ligand and sketch the consequences of inversion on reactivity. Special attention is paid to the square-planar case, exemplified by [Cu(CF3)4](-), in which Snyder had the foresight to see a case of an inverted field, with the empty valence orbital being primarily ligand centered, the dx2-y2 orbital heavily occupied, in what would normally be called a Cu(III) complex. For [Cu(CF3)4](-) we provide theoretical evidence from electron distributions, geometry of the ligands, thermochemistry of molecule formation, and the energetics of abstraction of a CF3 ligand by a base, all consistent with oxidation of the ligands in this molecule. In [Cu(CF3)4](-), and perhaps more complexes on the right side of the transition series than one has imagined, some ligands are σ-noninnocent. Exploration of inverted ligand fields helps us see the continuous, borderless transition from transition metal to main group bonding. We also give voice to a friendly disagreement on oxidation states in these remarkable molecules.


Assuntos
Complexos de Coordenação/química , Modelos Químicos , Materiais Biomiméticos/química , Bases de Lewis/química , Ligantes , Metais Pesados/química , Metais Leves/química , Estrutura Molecular , Oxirredução , Teoria Quântica
13.
Inorg Chem ; 56(6): 3512-3516, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28240887

RESUMO

The aromatic methylene blue cation (MB+) shows unprecedented ligand behavior in the X-ray structures of the trigonal-planar (TP) complexes MBMCl2 (M = CuI, AgI). The two isostructural compounds were exclusively synthesized by grinding together methylene blue chloride and MCl solids. Only in the case of AuCl did the technique lead to a different, yet isoformular, AuI derivative with separated MB+ and AuCl2- counterions and no direct N-Au linkage. While the density functional theory (DFT) molecular modeling failed in reproducing the isolated Cu and Ag complexes, the solid-state program CRYSTAL satisfactorily provided for Cu the correct TP building block associated with a highly compact π stacking of the MB+ ligands. In this respect, the dispersion interactions, evaluated with the DFT functional, provide to the system an extra energy, which likely supports the unprecedented metal coordination of the MB+ cation. The feature seems governed by subtle chemical factors, such as, for instance, the selected metal ion of the coinage triad. Thus, the electronically consistent AuI ion does not form the analogous TP building block because of a looser supramolecular arrangement. In conclusion, while a given crystalline design is generally fixed by the nature of the building block, a peculiarly efficient supramolecular packing may stabilize an otherwise unattainable metal complex.

14.
Inorg Chem ; 55(1): 283-91, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26675208

RESUMO

The compound [Ru(CN(t)Bu)4(Cl)2], 1, reacts with I2, yielding the halogen-bonded (XB) 1D species {[Ru(CN(t)Bu)4(I)2]·I2}n, (2·I2)n, whose building block contains I(-) ligands in place of Cl(-) ligands, even though no suitable redox agent is present in solution. Some isolated solid-state intermediates, such as {[Ru(CN(t)Bu)4(Cl)2]·2I2}n, (1·2I2)n, and {[Ru(CN(t)Bu)4(Cl)(I)]·3I2}n, (3·3I2)n, indicate the stepwise substitution of the two trans-halide ligands in 1, showing that end-on-coordinated trihalides play a key role in the process. In particular, the formation of ClI2(-) triggers electron transfer, possibly followed by an inverted coordination of the triatomic species through the external iodine atom. This allows I-Cl separation, as corroborated by Raman spectra. The process through XB intermediates corresponds to reduction of one iodine atom combined with the oxidation of one coordinated chloride ligand to give the corresponding zerovalent atom of I-Cl. This redox process, explored by density functional theory calculations (B97D/6-31+G(d,p)/SDD (for I and Ru atoms)), is apparently counterintuitive with respect to the known behavior of the corresponding free halogen systems, which favor iodide oxidation by Cl2. On the other hand, similar energy barriers are found for the metal-assisted process and require a supply of energy to be passed. In this respect, the control of the temperature is fundamental in combination with the favorable crystallizations of the various solid-state products. As an important conclusion, trihalogens, as XB adducts, are not static in nature but are able to undergo dynamic inner electron transfers consistently with implicit redox chemistry.

15.
Inorg Chem ; 53(18): 9761-70, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25165891

RESUMO

The Co6C(CO)12(AuPPh3)4 carbide carbonyl cluster was obtained from the reaction of [Co6C(CO)15](2-) with Au(PPh3)Cl. This new species was investigated by variable-temperature (31)P NMR spectroscopy, X-ray crystallography, and density functional theory methods. Three different solvates were characterized in the solid state, namely, Co6C(CO)12(AuPPh3)4 (I), Co6C(CO)12(AuPPh3)4·THF (II), and Co6C(CO)12(AuPPh3)4·4THF (III), where THF = tetrahydrofuran. These are not merely different solvates of the same neutral cluster, but they contain three different isomers of Co6C(CO)12(AuPPh3)4. The three isomers I-III possess the same octahedral [Co6C(CO)12](4-) carbido-carbonyl core differently decorated by four [AuPPh3](+) fragments and showing a different Au(I)···Au(I) connectivity. Theoretical investigations suggest that the formation in the solid state of the three isomers during crystallization is governed by packing and van der Waals forces, as well as aurophilic and weak π-π and π-H interactions. In addition, the closely related cluster Co6C(CO)12(PPh3)(AuPPh3)2 was obtained from the reaction of [Co8C(CO)18](2-) with Au(PPh3)Cl, and two of its solvates were crystallographically characterized, namely, Co6C(CO)12(PPh3)(AuPPh3)2·toluene (IV) and Co6C(CO)12(PPh3)(AuPPh3)2·0.5toluene (V). A significant, even if minor, effect of the cocrystallized solvent molecules on the structure of the cluster was observed also in this case.

16.
Inorg Chem ; 52(18): 10559-65, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-24004143

RESUMO

The Ni6C(CO)9(AuPPh3)4 bimetallic carbide carbonyl cluster was obtained from the reaction of [Ni9C(CO)17](2-) with Au(PPh3)Cl. It contains a rare carbon-centered (distorted) Ni6C octahedral core decorated by four Au(PPh3) fragments. These are µ3-bonded to four contiguous Ni3-triangular faces and display weak intramolecular Au···Au d(10)-d(10) interactions. The cluster has been characterized in the solid state on two different solvato crystals, i.e., Ni6C(CO)9(AuPPh3)4·THF and Ni6C(CO)9(AuPPh3)4·THF·0.5C6H14. The two solvates show some interesting differences concerning the weak Au···Au contacts. Density functional theory calculations have demonstrated that the presence of the two isomers is related to solid-state packing effects and not to the existence of two double minima in the potential energy surface. This, in turn, confirms that Au···Au d(10)-d(10) interactions are rather soft and thus influenced also by weak van der Waals forces because of the interaction of the cluster with the cocrystallized solvent molecules.

17.
Inorg Chem ; 52(8): 4635-47, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23537366

RESUMO

This paper presents the synthesis and structural characterization of the unprecedented tris-phosphido-bridged compounds Pt3(µ-PBu(t)2)3X3 (X = Cl, Br, I), having only 42 valence electrons, while up to now analogous clusters typically have 44e(-). The new species were obtained by an apparent bielectronic oxidation of the 44e(-) monohalides Pt3(µ-PBu(t)2)3(CO)2X with the corresponding dihalogen X2. Their X-ray structures are close to the D3h symmetry, similarly to the 44e(-) analogues with three terminal carbonyl ligands. The products were also obtained by electrochemical oxidation of the same monohalides in the presence of the corresponding halide. In a detailed study on the formation of Pt3(µ-PBu(t)2)3I3, the redox potentials indicated that I2 can only perform the first monoelectronic oxidation but is unsuited for the second one. Accordingly, the 43e(-) intermediate [Pt3(µ-PBu(t)2)3(CO)2I](+) was ascertained to play a key role. Another piece of information is that, together with the fully oxidized product Pt3(µ-PBu(t)2)3I3, the transient 44e(-) species [Pt3(µ-PBu(t)2)3(CO)3](+) is formed in the early steps of the reaction. In order to extract detailed information on the formation pathway, involving both terminal ligand substitutions and electron transfer processes, a DFT investigation has been performed and all the possible intermediates have been defined together with their associated energy costs. The profile highlights many important aspects, such as the formation of an appropriate couple of 43e(-) intermediates having different sets of terminal coligands, and suitable redox potentials for the transfer of one electron. Optimizations of 45e(-) associative intermediates in the ligand substitution reactions indicate their possible involvement in the redox process with reduction of the overall energy cost. Finally, according to MO arguments, the unique stability of the 42e(-) phosphido-bridged Pt3 clusters can be attributed to the simultaneous presence of three terminal halides.

18.
Polymers (Basel) ; 15(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38006091

RESUMO

In this work, thioether-amide ligands featuring a combination of hard amide groups with soft donor groups have been employed to develop new zinc catalysts for the ring-opening polymerization of cyclic esters. All complexes were prepared in high yields through alkane elimination reactions with diethyl zinc and characterized using nuclear magnetic resonance (NMR) spectroscopy. Density functional theory (DFT) characterization provided insight into the parameters that influence catalytic activity, such as steric hindrance at the metal center, Lewis acidity and electronic density of thioether-amide ligands. In the presence of one equivalent of isopropanol, all complexes were active in the ring-opening polymerization of rac-ß-butyrolactone. Quantitative conversion of 100 monomer equivalents was achieved within 1 h at 80 °C in a toluene solution. Number-average molecular weights increased linearly with monomer conversion; the values were in optimal agreement with those expected, and polydispersity index values were narrow and relatively constant throughout the course of polymerization. The most active complex was also effective in the ring-opening polymerization of ε-caprolactone and L-lactide. To propose a reliable reaction path, DFT calculations were undertaken. In the first step of the reaction, the acidic proton of the alcohol is transferred to the basic nitrogen atom of the amide ligand coordinated to the zinc ion. This leads to the alcoholysis of the Zn-N bond and the formation of an alcoholate derivative that starts the polymerization. In subsequent steps, the reaction follows the classical coordination-insertion mechanism.

19.
ACS Omega ; 7(10): 8665-8674, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35309457

RESUMO

C-C bond activation by transition metal complexes in ring-strained compounds followed by annulation with unsaturated compounds is an efficient approach to generate structurally more complex compounds. However, the site of catalytic C-C bond activation is difficult to predict in unsymmetrically substituted polycyclic systems. Here, we report a study on the (regio)selective catalytic cleavage of selected C-C bonds in 1-aza-[3]triphenylene, followed by annulation with alkynes, forming products with extended π-conjugated frameworks. Based on density functional theory (DFT) calculations, we established the stability of possible transition metal intermediates formed by oxidative addition to the C-C bond and thus identified the likely site of C-C bond activation. The computationally predicted selectivity was confirmed by the following experimental tests for the corresponding Ir-catalyzed C-C cleavage reaction followed by an alkyne insertion that yielded mixtures of two mono-insertion products isolated with yields of 34-36%, due to the close reactivity of two bonds during the first C-C bond activation. Similar results were obtained for twofold Ir- or Rh-catalyzed insertion reactions, with higher yields of 72-77%. In a broader context, by combining DFT calculations, which provided insights into the relative reactivity of individual C-C bonds, with experimental results, our approach allows us to synthesize previously unknown pentacyclic azaaromatic compounds.

20.
J Am Chem Soc ; 133(45): 18433-46, 2011 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-21958078

RESUMO

A series of bimetallic ruthenium complexes [{Ru(dppe)Cp*}(2)(µ-C≡CArC≡C)] featuring diethynylaromatic bridging ligands (Ar = 1,4-phenylene, 1,4-naphthylene, 9,10-anthrylene) have been prepared and some representative molecular structures determined. A combination of UV-vis-NIR and IR spectroelectrochemical methods and density functional theory (DFT) have been used to demonstrate that one-electron oxidation of compounds [{Ru(dppe)Cp*}(2)(µ-C≡CArC≡C)](HC≡CArC≡CH = 1,4-diethynylbenzene; 1,4-diethynyl-2,5-dimethoxybenzene; 1,4-diethynylnaphthalene; 9,10-diethynylanthracene) yields solutions containing radical cations that exhibit characteristics of both oxidation of the diethynylaromatic portion of the bridge, and a mixed-valence state. The simultaneous population of bridge-oxidized and mixed-valence states is likely related to a number of factors, including orientation of the plane of the aromatic portion of the bridging ligand with respect to the metal d-orbitals of appropriate π-symmetry.


Assuntos
Hidrocarbonetos Aromáticos/química , Compostos Organometálicos/química , Rutênio/química , Cátions/química , Radicais Livres/química , Ligantes , Modelos Moleculares , Estrutura Molecular , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA