RESUMO
BACKGROUND: MicroRNAs (miRNAs) constitute a family of small RNA (sRNA) population that regulates the gene expression and plays an important role in plant development, metabolism, signal transduction and stress response. Extensive studies on miRNAs have been performed in different plants such as Arabidopsis thaliana, Oryza sativa etc. and volume of the miRNA database, mirBASE, has been increasing on day to day basis. Stevia rebaudiana Bertoni is an important perennial herb which accumulates high concentrations of diterpene steviol glycosides which contributes to its high indexed sweetening property with no calorific value. Several studies have been carried out for understanding molecular mechanism involved in biosynthesis of these glycosides, however, information about miRNAs has been lacking in S. rebaudiana. Deep sequencing of small RNAs combined with transcriptomic data is a powerful tool for identifying conserved and novel miRNAs irrespective of availability of genome sequence data. RESULTS: To identify miRNAs in S. rebaudiana, sRNA library was constructed and sequenced using Illumina genome analyzer II. A total of 30,472,534 reads representing 2,509,190 distinct sequences were obtained from sRNA library. Based on sequence similarity, we identified 100 miRNAs belonging to 34 highly conserved families. Also, we identified 12 novel miRNAs whose precursors were potentially generated from stevia EST and nucleotide sequences. All novel sequences have not been earlier described in other plant species. Putative target genes were predicted for most conserved and novel miRNAs. The predicted targets are mainly mRNA encoding enzymes regulating essential plant metabolic and signaling pathways. CONCLUSIONS: This study led to the identification of 34 highly conserved miRNA families and 12 novel potential miRNAs indicating that specific miRNAs exist in stevia species. Our results provided information on stevia miRNAs and their targets building a foundation for future studies to understand their roles in key stevia traits.
Assuntos
Sequência Conservada/genética , Perfilação da Expressão Gênica , MicroRNAs/genética , Stevia/genética , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , SoftwareRESUMO
Osmotolerance is one of the critical factors for successful survival and colonization of microbes in saline environments. Nonetheless, information about these osmotolerance mechanisms is still inadequate. Exploration of the saline soil microbiome for its community structure and novel genetic elements is likely to provide information on the mechanisms involved in osmoadaptation. The present study explores the saline soil microbiome for its native structure and novel genetic elements involved in osmoadaptation. 16S rRNA gene sequence analysis has indicated the dominance of halophilic/halotolerant phylotypes affiliated to Proteobacteria, Actinobacteria, Gemmatimonadetes, Bacteroidetes, Firmicutes, and Acidobacteria. A functional metagenomics approach led to the identification of osmotolerant clones SSR1, SSR4, SSR6, SSR2 harboring BCAA_ABCtp, GSDH, STK_Pknb, and duf3445 genes. Furthermore, transposon mutagenesis, genetic, physiological and functional studies in close association has confirmed the role of these genes in osmotolerance. Enhancement in host osmotolerance possibly though the cytosolic accumulation of amino acids, reducing equivalents and osmolytes involving BCAA-ABCtp, GSDH, and STKc_PknB. Decoding of the genetic elements prevalent within these microbes can be exploited either as such for ameliorating soils or their genetically modified forms can assist crops to resist and survive in saline environment.
RESUMO
Every niche in the biosphere is touched by the seemingly endless capacity of microbes to transform the world around them by adapting swiftly and flexibly to the environmental changes, likewise the gastrointestinal tract is no exception. The ability to cope with rapid changes in external osmolarity is an important aspect of gut microbes for their survival and colonization. Identification of these survival mechanisms is a pivotal step towards understanding genomic suitability of a symbiont for successful human gut colonization. Here we highlight our recent work applying functional metagenomics to study human gut microbiome to identify candidate genes responsible for the salt stress tolerance. A plasmid borne metagenomic library of Bacteroidetes enriched human fecal metagenomic DNA led to identification of unique salt osmotolerance clones SR6 and SR7. Subsequent gene analysis combined with functional studies revealed that TLSRP1 within pSR7 and TMSRP1 and ABCTPP of pSR6 are the active loci responsible for osmotolerance through an energy dependent mechanism. Our study elucidates the novel genetic machinery involved in bestowing osmotolerance in Prevotella and Bacteroidetes, the predominant microbial groups in a North Indian population. This study unravels an alternative method for imparting ionic stress tolerance, which may be prevalent in the human gut microbiome.