RESUMO
Starting with the launch of the Human Genome Project three decades ago, and continuing after its completion in 2003, genomics has progressively come to have a central and catalytic role in basic and translational research. In addition, studies increasingly demonstrate how genomic information can be effectively used in clinical care. In the future, the anticipated advances in technology development, biological insights, and clinical applications (among others) will lead to more widespread integration of genomics into almost all areas of biomedical research, the adoption of genomics into mainstream medical and public-health practices, and an increasing relevance of genomics for everyday life. On behalf of the research community, the National Human Genome Research Institute recently completed a multi-year process of strategic engagement to identify future research priorities and opportunities in human genomics, with an emphasis on health applications. Here we describe the highest-priority elements envisioned for the cutting-edge of human genomics going forward-that is, at 'The Forefront of Genomics'.
Assuntos
Pesquisa Biomédica/tendências , Genoma Humano/genética , Genômica/tendências , Saúde Pública/normas , Pesquisa Translacional Biomédica/tendências , Pesquisa Biomédica/economia , COVID-19/genética , Genômica/economia , Humanos , National Human Genome Research Institute (U.S.)/economia , Mudança Social , Pesquisa Translacional Biomédica/economia , Estados UnidosRESUMO
The All of Us Research Program, a health and genetics epidemiologic data collection program, has been substantially affected by the coronavirus disease 2019 (COVID-19) pandemic. Although the program is highly digital in nature, certain aspects of the data collection require in-person interaction between staff and participants. Before the pandemic, the program was enrolling approximately 12,500 participants per month at more than 400 clinical sites. In March 2020, because of the pandemic, all in-person activity at program sites and by engagement partners was paused to develop processes and procedures for in-person activities that incorporated strict safety protocols. In addition, the program adopted new data collection methodologies to reduce the need for in-person activities. Through February 2022, a total of 224 clinical sites had reactivated in-person activity, and all enrollment and engagement partners have adopted new data collection methods that can be used remotely. As the COVID-19 pandemic persists, the program continues to require safety procedures for in-person activity and continues to generate and pilot methodologies that reduce risk and make it easier for participants to provide information.
Assuntos
COVID-19 , Saúde da População , Humanos , COVID-19/epidemiologia , Pandemias/prevenção & controle , Coleta de DadosRESUMO
Since its start, the Mammalian Gene Collection (MGC) has sought to provide at least one full-protein-coding sequence cDNA clone for every human and mouse gene with a RefSeq transcript, and at least 6200 rat genes. The MGC cloning effort initially relied on random expressed sequence tag screening of cDNA libraries. Here, we summarize our recent progress using directed RT-PCR cloning and DNA synthesis. The MGC now contains clones with the entire protein-coding sequence for 92% of human and 89% of mouse genes with curated RefSeq (NM-accession) transcripts, and for 97% of human and 96% of mouse genes with curated RefSeq transcripts that have one or more PubMed publications, in addition to clones for more than 6300 rat genes. These high-quality MGC clones and their sequences are accessible without restriction to researchers worldwide.