Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 175(7): 1872-1886.e24, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30449621

RESUMO

Generation of the "epitranscriptome" through post-transcriptional ribonucleoside modification embeds a layer of regulatory complexity into RNA structure and function. Here, we describe N4-acetylcytidine (ac4C) as an mRNA modification that is catalyzed by the acetyltransferase NAT10. Transcriptome-wide mapping of ac4C revealed discretely acetylated regions that were enriched within coding sequences. Ablation of NAT10 reduced ac4C detection at the mapped mRNA sites and was globally associated with target mRNA downregulation. Analysis of mRNA half-lives revealed a NAT10-dependent increase in stability in the cohort of acetylated mRNAs. mRNA acetylation was further demonstrated to enhance substrate translation in vitro and in vivo. Codon content analysis within ac4C peaks uncovered a biased representation of cytidine within wobble sites that was empirically determined to influence mRNA decoding efficiency. These findings expand the repertoire of mRNA modifications to include an acetylated residue and establish a role for ac4C in the regulation of mRNA translation.


Assuntos
Citidina/análogos & derivados , Acetiltransferase N-Terminal E/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Acetilação , Citidina/genética , Citidina/metabolismo , Células HeLa , Humanos , Acetiltransferase N-Terminal E/genética , Acetiltransferases N-Terminal , RNA Mensageiro/genética
2.
RNA ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684317

RESUMO

RNA modifications have a substantial impact on tRNA function, with modifications in the anticodon loop contributing to translational fidelity and modifications in the tRNA core impacting structural stability. In bacteria, tRNA modifications are crucial for responding to stress and regulating the expression of virulence factors. Although tRNA modifications are well-characterized in a few model organisms, our knowledge of tRNA modifications in human pathogens, such as Pseudomonas aeruginosa, remains limited. Here we leveraged two orthogonal approaches to build a reference landscape of tRNA modifications in E. coli, which enabled us to identify similar modifications in P. aeruginosa. Our analysis revealed a substantial degree of conservation between the two organisms, while also uncovering potential sites of tRNA modification in P. aeruginosa tRNAs that are not present in E. coli. The mutational signature at one of these sites, position 46 of tRNAGln1(UUG) is dependent on the P. aeruginosa homolog of TapT, the enzyme responsible for the 3-(3-amino-3-carboxypropyl) uridine (acp3U) modification. Identifying which modifications are present on different tRNAs will uncover the pathways impacted by the different tRNA modifying enzymes, some of which play roles in determining virulence and pathogenicity.

3.
Nucleic Acids Res ; 45(22): 12780-12797, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29244186

RESUMO

Actively transcribed genes adopt a unique chromatin environment with characteristic patterns of enrichment. Within gene bodies, H3K36me3 and cytosine DNA methylation are elevated at exons of spliced genes and have been implicated in the regulation of pre-mRNA splicing. H3K36me3 is further responsive to splicing, wherein splicing inhibition led to a redistribution and general reduction over gene bodies. In contrast, little is known of the mechanisms supporting elevated DNA methylation at actively spliced genic locations. Recent evidence associating the de novo DNA methyltransferase Dnmt3b with H3K36me3-rich chromatin raises the possibility that genic DNA methylation is influenced by splicing-associated H3K36me3. Here, we report the generation of an isogenic resource to test the direct impact of splicing on chromatin. A panel of minigenes of varying splicing potential were integrated into a single FRT site for inducible expression. Profiling of H3K36me3 confirmed the established relationship to splicing, wherein levels were directly correlated with splicing efficiency. In contrast, DNA methylation was equivalently detected across the minigene panel, irrespective of splicing and H3K36me3 status. In addition to revealing a degree of independence between genic H3K36me3 and DNA methylation, these findings highlight the generated minigene panel as a flexible platform for the query of splicing-dependent chromatin modifications.


Assuntos
Metilação de DNA , Éxons/genética , Precursores de RNA/genética , Splicing de RNA , Animais , Cromatina/genética , Cromatina/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilação , Camundongos , Modelos Genéticos , DNA Metiltransferase 3B
5.
Nucleic Acids Res ; 42(11): 7319-29, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24792162

RESUMO

The selective RNA-binding protein quaking I (QKI) plays important roles in controlling alternative splicing (AS). Three QKI isoforms are broadly expressed, which display distinct nuclear-cytoplasmic distribution. However, molecular mechanisms by which QKI isoforms control AS, especially in distinct cell types, still remain elusive. The quakingviable (qk(v)) mutant mice carry deficiencies of all QKI isoforms in oligodendrocytes (OLs) and Schwann cells (SWCs), the myelinating glia of central and peripheral nervous system (CNS and PNS), respectively, resulting in severe dysregulation of AS. We found that the cytoplasmic isoform QKI-6 regulates AS of polyguanine (G-run)-containing transcripts in OLs and rescues aberrant AS in the qk(v) mutant by repressing expression of two canonical splicing factors, heterologous nuclear ribonucleoproteins (hnRNPs) F and H. Moreover, we identified a broad spectrum of in vivo functional hnRNP F/H targets in OLs that contain conserved exons flanked by G-runs, many of which are dysregulated in the qk(v) mutant. Interestingly, AS targets of the QKI-6-hnRNP F/H pathway in OLs are differentially affected in SWCs, suggesting that additional cell-type-specific factors modulate AS during CNS and PNS myelination. Together, our studies provide the first evidence that cytoplasmic QKI-6 acts upstream of hnRNP F/H, which forms a novel pathway to control AS in myelinating glia.


Assuntos
Processamento Alternativo , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/metabolismo , Neuroglia/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Linhagem Celular , Citoplasma/metabolismo , Éxons , Camundongos , Camundongos Quaking , Camundongos Transgênicos , Bainha de Mielina/fisiologia , Oligodendroglia/metabolismo , Isoformas de Proteínas/metabolismo , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , Células de Schwann/metabolismo
6.
bioRxiv ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38529508

RESUMO

RNA modifications have a substantial impact on tRNA function, with modifications in the anticodon loop contributing to translational fidelity and modifications in the tRNA core impacting structural stability. In bacteria, tRNA modifications are crucial for responding to stress and regulating the expression of virulence factors. Although tRNA modifications are well-characterized in a few model organisms, our knowledge of tRNA modifications in human pathogens, such as Pseudomonas aeruginosa, remains limited. Here we leveraged two orthogonal approaches to build a reference landscape of tRNA modifications in E. coli, which enabled us to identify similar modifications in P. aeruginosa. Our analysis revealed a substantial degree of conservation between the two organisms, while also uncovering potential sites of tRNA modification in P. aeruginosa tRNAs that are not present in E. coli. The mutational signature at one of these sites, position 46 of tRNAGln1(UUG) is dependent on the P. aeruginosa homolog of TapT, the enzyme responsible for the 3-(3-amino-3-carboxypropyl) uridine (acp3U) modification. Identifying which modifications are present on different tRNAs will uncover the pathways impacted by the different tRNA modifying enzymes, some of which play roles in determining virulence and pathogenicity.

7.
NAR Cancer ; 6(1): zcae004, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38328795

RESUMO

Metabolic reprogramming is a hallmark of cancer that facilitates changes in many adaptive biological processes. Mutations in the tricarboxylic acid cycle enzyme fumarate hydratase (FH) lead to fumarate accumulation and cause hereditary leiomyomatosis and renal cell cancer (HLRCC). HLRCC is a rare, inherited disease characterized by the development of non-cancerous smooth muscle tumors of the uterus and skin, and an increased risk of an aggressive form of kidney cancer. Fumarate has been shown to inhibit 2-oxoglutarate-dependent dioxygenases (2OGDDs) involved in the hydroxylation of HIF1α, as well as in DNA and histone demethylation. However, the link between fumarate accumulation and changes in RNA post-transcriptional modifications has not been defined. Here, we determine the consequences of fumarate accumulation on the activity of different members of the 2OGDD family targeting RNA modifications. By evaluating multiple RNA modifications in patient-derived HLRCC cell lines, we show that mutation of FH selectively affects the levels of N6-methyladenosine (m6A), while the levels of 5-formylcytosine (f5C) in mitochondrial tRNA are unaffected. This supports the hypothesis of a differential impact of fumarate accumulation on distinct RNA demethylases. The observation that metabolites modulate specific subsets of RNA-modifying enzymes offers new insights into the intersection between metabolism and the epitranscriptome.

8.
Proc Natl Acad Sci U S A ; 107(44): 19061-6, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-20956316

RESUMO

Precise control of alternative splicing governs oligodendrocyte (OL) differentiation and myelination in the central nervous system (CNS). A well-known example is the developmentally regulated expression of splice variants encoding myelin-associated glycoprotein (MAG), which generates two protein isoforms that associate with distinct cellular components crucial for axon-glial recognition during myelinogenesis and axon-myelin stability. In the quakingviable (qk(v)) hypomyelination mutant mouse, diminished expression of isoforms of the selective RNA-binding protein quaking I (QKI) leads to severe dysregulation of MAG splicing. The nuclear isoform QKI-5 was previously shown to bind an intronic element of MAG and modulate alternative exon inclusion from a MAG minigene reporter. Thus, QKI-5 deficiency was thought to underlie the defects of MAG splicing in the qk(v) mutant. Surprisingly, we found that transgenic expression of the cytoplasmic isoform QKI-6 in the qk(v) OLs completely rescues the dysregulation of MAG splicing without increasing expression or nuclear abundance of QKI-5. In addition, cytoplasmic QKI-6 selectively associates with the mRNA that encodes heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), a well-characterized splicing factor. Furthermore, QKI deficiency in the qk(v) mutant results in abnormally enhanced hnRNPA1 translation and overproduction of the hnRNPA1 protein but not hnRNPA1 mRNA, which can be successfully rescued by the QKI-6 transgene. Finally, we show that hnRNPA1 binds MAG pre-mRNA and modulates alternative inclusion of MAG exons. Together, these results reveal a unique cytoplasmic pathway in which QKI-6 controls translation of the splicing factor hnRNPA1 to govern alternative splicing in CNS myelination.


Assuntos
Processamento Alternativo/fisiologia , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores de Superfície Celular/biossíntese , Animais , Axônios/metabolismo , Linhagem Celular , Núcleo Celular/genética , Citoplasma/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Camundongos , Camundongos Transgênicos , Glicoproteína Associada a Mielina , Neuroglia/metabolismo , Biossíntese de Proteínas/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Receptores de Superfície Celular/genética
9.
iScience ; 19: 326-339, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31404833

RESUMO

The mechanisms supporting dynamic regulation of CTCF-binding sites remain poorly understood. Here we describe the TET-catalyzed 5-methylcytosine derivative, 5-carboxylcytosine (5caC), as a factor driving new CTCF binding within genomic DNA. Through a combination of in vivo and in vitro approaches, we reveal that 5caC generally strengthens CTCF association with DNA and facilitates binding to suboptimal sequences. Dramatically, profiling of CTCF binding in a cellular model that accumulates genomic 5caC identified ~13,000 new CTCF sites. The new sites were enriched for overlapping 5caC and were marked by an overall reduction in CTCF motif strength. As CTCF has multiple roles in gene expression, these findings have wide-reaching implications and point to induced 5caC as a potential mechanism to achieve differential CTCF binding in cells.

10.
Neurosci Bull ; 29(2): 216-28, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23558590

RESUMO

Myelination by oligodendroglial cells (OLs) enables the propagation of action potentials along neuronal axons, which is essential for rapid information flow in the central nervous system. Besides saltatory conduction, the myelin sheath also protects axons against inflammatory and oxidative insults. Loss of myelin results in axonal damage and ultimately neuronal loss in demyelinating disorders. However, accumulating evidence indicates that OLs also provide support to neurons via mechanisms beyond the insulating function of myelin. More importantly, an increasing volume of reports indicates defects of OLs in numerous neurodegenerative diseases, sometimes even preceding neuronal loss in pre-symptomatic episodes, suggesting that OL pathology may be an important mechanism contributing to the initiation and/or progression of neurodegeneration. This review focuses on the emerging picture of neuronal support by OLs in the pathogenesis of neurodegenerative disorders through diverse molecular and cellular mechanisms, including direct neuron-myelin interaction, metabolic support by OLs, and neurotrophic factors produced by and/or acting on OLs.


Assuntos
Degeneração Neural/metabolismo , Degeneração Neural/patologia , Fatores de Crescimento Neural/metabolismo , Oligodendroglia/fisiologia , Potenciais de Ação/fisiologia , Animais , Comunicação Celular/fisiologia , Humanos , Bainha de Mielina/metabolismo , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA