Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Br J Cancer ; 127(12): 2186-2197, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36243890

RESUMO

BACKGROUND: Cancer immunotherapies such as bispecific T-cell engagers have seen limited adoption in prostate cancer (PC), possibly due to differing levels of cancer receptor expression and effector T-cell infiltration between patients and inherent defects in T-cell engager design. METHODS: CD8+ T-cell infiltration and PSMA expression were determined by RNA sequencing of primary PC tissue samples from 126 patients with localised PC and 17 patients with metastatic PC. Prognostic value was assessed through clinical parameters, including CAPRA-S risk score. A panel of albumin-fused anti-CD3 × anti-PSMA T-cell engagers with different neonatal Fc receptor (FcRn) affinity were characterised by flow cytometry, Bio-Layer Interferometry and functional cellular assays. RESULTS: A subset of patients with localised (30/126 = 24%) and metastatic (10/17 = 59%) PC showed both high PSMA expression and high CD8+ T-cell enrichment. The High/High phenotype in localised PC associated with a clinically high-risk cancer subtype, confirmed in an external patient cohort (n = 550, PRAD/TCGA). The T-cell engagers exhibited tunable FcRn-driven cellular recycling, CD3 and PSMA cellular engagement, T-cell activation and PSMA level-dependent cellular cytotoxicity. CONCLUSION: This work presents an albumin-fused bispecific T-cell engager with programmable FcRn engagement and identifies a high-risk PC patient subset as candidates for treatment with the T-cell engager class of immuno-oncology biologics.


Assuntos
Albuminas , Neoplasias da Próstata , Masculino , Humanos , Linfócitos T , Neoplasias da Próstata/terapia
2.
Chembiochem ; 22(14): 2478-2485, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33998129

RESUMO

Chemical glycosylation of proteins is a powerful tool applied widely in biomedicine and biotechnology. However, it is a challenging undertaking and typically relies on recombinant proteins and site-specific conjugations. The scope and utility of this nature-inspired methodology would be broadened tremendously by the advent of facile, scalable techniques in glycosylation, which are currently missing. In this work, we investigated a one-pot aqueous protocol to achieve indiscriminate, surface-wide glycosylation of the surface accessible amines (lysines and/or N-terminus). We reveal that this approach afforded minimal if any change in the protein activity and recognition events in biochemical and cell culture assays, but at the same time provided a significant benefit of stabilizing proteins against aggregation and fibrillation - as demonstrated on serum proteins (albumins and immunoglobulin G, IgG), an enzyme (uricase), and proteins involved in neurodegenerative disease (α-synuclein) and diabetes (insulin). Most importantly, this highly advantageous result was achieved via a one-pot aqueous protocol performed on native proteins, bypassing the use of complex chemical methodologies and recombinant proteins.


Assuntos
Doenças Neurodegenerativas , Glicosilação , Lisina
3.
iScience ; 25(9): 104958, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36072551

RESUMO

Costimulation of tumor-infiltrating T lymphocytes by anti-4-1BB monoclonal antibodies (mAbs) has shown anti-tumor activity in human trials, but can be associated with significant off-tumor toxicities involving FcγR interactions. Here, we introduce albumin-fused mouse and human bispecific antibodies with clinically favorable pharmacokinetics designed to confine 4-1BB costimulation to the tumor microenvironment. These Fc-free 4-1BB agonists consist of an EGFR-specific VHH antibody, a 4-1BB-specific scFv, and a human albumin sequence engineered for high FcRn binding connected in tandem (LiTCo-Albu). We demonstrate in vitro cognate target engagement, EGFR-specific costimulatory activity, and FcRn-driven cellular recycling similar to non-fused FcRn high-binding albumin. The mouse LiTCo-Albu exhibited a prolonged circulatory half-life and in vivo tumor inhibition, with no indication of 4-1BB mAb-associated toxicity. Furthermore, we show a greater therapeutic effect when used in combination with PD-1-blocking mAbs. These findings demonstrate the feasibility of tumor-specific LiTCo-Albu antibodies for safe and effective costimulatory strategies in cancer immunotherapy.

4.
Commun Biol ; 4(1): 310, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686177

RESUMO

Fc-less bispecific T-cell engagers have reached the immuno-oncology market but necessitate continual infusion due to rapid clearance from the circulation. This work introduces a programmable serum half-life extension platform based on fusion of human albumin sequences engineered with either null (NB), wild type (WT) or high binding (HB) FcRn affinity combined with a bispecific T-cell engager. We demonstrate in a humanised FcRn/albumin double transgenic mouse model (AlbuMus) the ability to tune half-life based on the albumin sequence fused with a BiTE-like bispecific (anti-EGFR nanobody x anti-CD3 scFv) light T-cell engager (LiTE) construct [(t½ 0.6 h (Fc-less LiTE), t½ 19 hours (Albu-LiTE-NB), t½ 26 hours (Albu-LiTE-WT), t½ 37 hours (Albu-LiTE-HB)]. We show in vitro cognate target engagement, T-cell activation and discrimination in cellular cytotoxicity dependent on EGFR expression levels. Furthermore, greater growth inhibition of EGFR-positive BRAF mutated tumours was measured following a single dose of Albu-LiTE-HB construct compared to the Fc-less LiTE format and a full-length anti-EGFR monoclonal antibody in a new AlbuMus RAG1 knockout model introduced in this work. Programmable half-life extension facilitated by this albumin platform potentially offers long-lasting effects, better patient compliance and a method to tailor pharmacokinetics to maximise therapeutic efficacy and safety of immuno-oncology targeted biologics.


Assuntos
Anticorpos Biespecíficos/farmacocinética , Antineoplásicos Imunológicos/farmacocinética , Antígenos de Histocompatibilidade Classe I/metabolismo , Neoplasias/tratamento farmacológico , Receptores Fc/metabolismo , Albumina Sérica Humana/farmacocinética , Linfócitos T/efeitos dos fármacos , Células 3T3 , Animais , Anticorpos Biespecíficos/metabolismo , Antineoplásicos Imunológicos/metabolismo , Células CHO , Cricetulus , Composição de Medicamentos , Feminino , Células HEK293 , Células HT29 , Meia-Vida , Proteínas de Homeodomínio/genética , Humanos , Células Jurkat , Ativação Linfocitária/efeitos dos fármacos , Células MCF-7 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/imunologia , Neoplasias/patologia , Estudo de Prova de Conceito , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacocinética , Albumina Sérica Humana/genética , Albumina Sérica Humana/metabolismo , Linfócitos T/imunologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Control Release ; 322: 53-63, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32145268

RESUMO

Albumin accumulation in tumours could reflect a role of albumin in transport of endogenous nutrient cargos required for cellular growth and not just a suggested source of amino acids; a role driven by albumin engagement with its cognate cellular recycling neonatal Fc receptor. We investigate the hypothesis that albumin cellular recruitment is increased by higher human FcRn (hFcRn) expression in human cancer tissue that provides the mechanistic basis for exploitation in albumin-based drug designs engineered to optimise this process. Eight out of ten different human cancer tissue types screened for hFcRn expression by immunohistochemistry (310 samples) exhibited significantly higher hFcRn expression compared to healthy tissues. Accelerated tumour growth over 28 days in mice inoculated with hFcRn-expressing HT-29 human colorectal cancer cell xenografts, compared to CRISPR/Cas9 hFcRn-knockout HT-29, suggests a hFcRn-mediated tumour growth effect. Direct correlation between hFcRn expression and albumin recycling supports hFcRn-mediated diversion of albumin from lysosomal degradation. Two-fold increase in accumulation of fluorescent labelled high-binding hFcRn albumin, compared to wild type albumin, in luciferase MDA-MB-231-Luc-D3H2LN breast cancer xenografts was shown. This work identifies overexpression of hFcRn in several human cancer types with mechanistic data suggesting hFcRn-driven albumin recruitment for increased cellular growth that has the potential to be exploited with high hFcRn-binding albumin variants for targeted therapies.


Assuntos
Desenho de Fármacos , Neoplasias , Animais , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Camundongos , Receptores Fc/genética , Albumina Sérica Humana
6.
Sci Rep ; 7: 42230, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28186116

RESUMO

One of the hallmarks of cancer is sustained angiogenesis. Here, normal endothelial cells are activated, and their formation of new blood vessels leads to continued tumour growth. An improved patient condition is often observed when angiogenesis is prevented or normalized through targeting of these genomically stable endothelial cells. However, intracellular targets constitute a challenge in therapy, as the agents modulating these targets have to be delivered and internalized specifically to the endothelial cells. Selection of antibodies binding specifically to certain cell types is well established. It is nonetheless a challenge to ensure that the binding of antibodies to the target cell will mediate internalization. Previously selection of such antibodies has been performed targeting cancer cell lines; most often using either monovalent display or polyvalent display. In this article, we describe selections that isolate internalizing antibodies by sequential combining monovalent and polyvalent display using two types of helper phages, one which increases display valence and one which reduces background. One of the selected antibodies was found to mediate internalization into human endothelial cells, although our results confirms that the single stranded nature of the DNA packaged into phage particles may limit applications aimed at targeting nucleic acids in mammalian cells.


Assuntos
Anticorpos/farmacologia , Bacteriófagos/metabolismo , Células Endoteliais/metabolismo , Linhagem Celular , DNA/metabolismo , Endocitose , Células Endoteliais/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Fibroblastos/citologia , Técnicas de Transferência de Genes , Humanos , Células-Tronco Mesenquimais/citologia , Microvasos/citologia , Biblioteca de Peptídeos , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA