Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gut ; 72(10): 1887-1903, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37399271

RESUMO

OBJECTIVE: Colorectal tumours are often densely infiltrated by immune cells that have a role in surveillance and modulation of tumour progression but are burdened by immunosuppressive signals, which might vary from primary to metastatic stages. Here, we deployed a multidimensional approach to unravel the T-cell functional landscape in primary colorectal cancers (CRC) and liver metastases, and genome editing tools to develop CRC-specific engineered T cells. DESIGN: We paired high-dimensional flow cytometry, RNA sequencing and immunohistochemistry to describe the functional phenotype of T cells from healthy and neoplastic tissue of patients with primary and metastatic CRC and we applied lentiviral vectors (LV) and CRISPR/Cas9 genome editing technologies to develop CRC-specific cellular products. RESULTS: We found that T cells are mainly localised at the front edge and that tumor-infiltrating T cells co-express multiple inhibitory receptors, which largely differ from primary to metastatic sites. Our data highlighted CD39 as the major driver of exhaustion in both primary and metastatic colorectal tumours. We thus simultaneously redirected T-cell specificity employing a novel T-cell receptor targeting HER-2 and disrupted the endogenous TCR genes (TCR editing (TCRED)) and the CD39 encoding gene (ENTPD1), thus generating TCREDENTPD1KOHER-2-redirected lymphocytes. We showed that the absence of CD39 confers to HER-2-specific T cells a functional advantage in eliminating HER-2+ patient-derived organoids in vitro and in vivo. CONCLUSION: HER-2-specific CD39 disrupted engineered T cells are promising advanced medicinal products for primary and metastatic CRC.


Assuntos
Antígenos CD , Apirase , Neoplasias Colorretais , Neoplasias Hepáticas , Linfócitos T , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/terapia , Receptores de Antígenos de Linfócitos T , Apirase/genética , Antígenos CD/genética , Engenharia Celular
2.
Haematologica ; 108(6): 1530-1543, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36200418

RESUMO

After allogeneic hematopoietic stem cell transplantation (HSCT), the emergence of circulating cytomegalovirus (CMV)- specific T cells correlates with protection from CMV reactivation, an important risk factor for non-relapse mortality. However, functional assays measuring CMV-specific cells are time-consuming and often inaccurate at early time-points. We report the results of a prospective single-center, non-interventional study that identified the enumeration of Dextramerpositive CMV-specific lymphocytes as a reliable and early predictor of viral reactivation. We longitudinally monitored 75 consecutive patients for 1 year after allogeneic HSCT (n=630 samples). The presence of ≥0.5 CMV-specific CD8+ cells/mL at day +45 was an independent protective factor from subsequent clinically relevant reactivation in univariate (P<0.01) and multivariate (P<0.05) analyses. Dextramer quantification correlated with functional assays measuring interferon-γ production, and allowed earlier identification of high-risk patients. In mismatched transplants, the comparative analysis of lymphocytes restricted by shared, donor- and host-specific HLA revealed the dominant role of thymic-independent CMV-specific reconstitution. Shared and donor-restricted CMV-specific T cells reconstituted with similar kinetics in recipients of CMV-seropositive donors, while donor-restricted T-cell reconstitution from CMV-seronegative grafts was impaired, indicating that in primary immunological responses the emergence of viral-specific T cells is largely sustained by antigen encounter on host infected cells rather than by cross-priming/presentation by non-infected donor-derived antigen-presenting cells. Multiparametric flow cytometry and high-dimensional analysis showed that shared-restricted CMV-specific lymphocytes display a more differentiated phenotype and increased persistence than donor-restricted counterparts. In this study, monitoring CMV-specific cells by Dextramer assay after allogeneic HSCT shed light on mechanisms of immune reconstitution and enabled risk stratification of patients, which could improve the clinical management of post-transplant CMV reactivations.


Assuntos
Infecções por Citomegalovirus , Transplante de Células-Tronco Hematopoéticas , Humanos , Citomegalovirus/fisiologia , Linfócitos T , Infecções por Citomegalovirus/etiologia , Estudos Prospectivos , Transplante Homólogo , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Antígenos HLA , Linfócitos T CD8-Positivos
3.
Eur J Immunol ; 51(8): 1992-2005, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34081326

RESUMO

The phenotype of infused cells is a major determinant of Adoptive T-cell therapy (ACT) efficacy. Yet, the difficulty in deciphering multiparametric cytometry data limited the fine characterization of cellular products. To allow the analysis of dynamic and complex flow cytometry samples, we developed cytoChain, a novel dataset mining tool and a new analytical workflow. CytoChain was challenged to compare state-of-the-art and innovative culture conditions to generate stem-like memory cells (TSCM ) suitable for ACT. Noticeably, the combination of IL-7/15 and superoxides scavenging sustained the emergence of a previously unidentified nonexhausted Fit-TSCM signature, overlooked by manual gating and endowed with superior expansion potential. CytoChain proficiently traced back this population in independent datasets, and in T-cell receptor engineered lymphocytes. CytoChain flexibility and function were then further validated on a published dataset from circulating T cells in COVID-19 patients. Collectively, our results support the use of cytoChain to identify novel, functionally critical immunophenotypes for ACT and patients immunomonitoring.


Assuntos
Mineração de Dados/métodos , Citometria de Fluxo/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , COVID-19/sangue , COVID-19/imunologia , Citocinas/metabolismo , Engenharia Genética , Humanos , Memória Imunológica , Imunofenotipagem , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , SARS-CoV-2/imunologia
4.
BMC Health Serv Res ; 21(1): 889, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454500

RESUMO

BACKGROUND: In the scientific literature, many studies describe the application of lean methodology in the hospital setting. Most of the articles focus on the results rather than on the approach adopted to introduce the lean methodology. In the absence of a clear view of the context and the introduction strategy, the first steps of the implementation process can take on an empirical, trial and error profile. Such implementation is time-consuming and resource-intensive and affects the adoption of the model at the organizational level. This research aims to outline the role contextual factors and introduction strategy play in supporting the operators introducing lean methodology in a hospital setting. METHODOLOGY: The methodology is revealed in a case study of an important hospital in Southern Italy, where lean has been successfully introduced through a pilot project in the pathway of cancer patients. The originality of the research is seen in the detailed description of the contextual elements and the introduction strategy. RESULTS: The results show significant process improvements and highlight the spontaneous dissemination of the culture of change in the organization and the streamlined adoption at the micro level. CONCLUSION: The case study shows the importance of the lean introduction strategy and contextual factors for successful lean implementation. Furthermore, it shows how both factors influence each other, underlining the dynamism of the organizational system.


Assuntos
Hospitais , Gestão da Qualidade Total , Humanos , Itália , Projetos Piloto
5.
Int J Mol Sci ; 21(17)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878276

RESUMO

Immunosuppression at tumor microenvironment (TME) is one of the major obstacles to be overcome for an effective therapeutic intervention against solid tumors. Tumor-associated macrophages (TAMs) comprise a sub-population that plays multiple pro-tumoral roles in tumor development including general immunosuppression, which can be identified in terms of high expression of mannose receptor (MR or CD206). Immunosuppressive TAMs, like other macrophage sub-populations, display functional plasticity that allows them to be re-programmed to inflammatory macrophages. In order to mitigate immunosuppression at the TME, several efforts are ongoing to effectively re-educate pro-tumoral TAMs. Extracellular vesicles (EVs), released by both normal and tumor cells types, are emerging as key mediators of the cell to cell communication and have been shown to have a role in the modulation of immune responses in the TME. Recent studies demonstrated the enrichment of high mannose glycans on the surface of small EVs (sEVs), a subtype of EVs of endosomal origin of 30-150 nm in diameter. This characteristic renders sEVs an ideal tool for the delivery of therapeutic molecules into MR/CD206-expressing TAMs. In this review, we report the most recent literature data highlighting the critical role of TAMs in tumor development, as well as the experimental evidences that has emerged from the biochemical characterization of sEV membranes. In addition, we propose an original way to target immunosuppressive TAMs at the TME by endogenously engineered sEVs for a new therapeutic approach against solid tumors.


Assuntos
Vesículas Extracelulares/imunologia , Tolerância Imunológica/imunologia , Lectinas Tipo C/metabolismo , Macrófagos/imunologia , Lectinas de Ligação a Manose/metabolismo , Neoplasias/imunologia , Receptores de Superfície Celular/metabolismo , Microambiente Tumoral/imunologia , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Receptor de Manose , Neoplasias/metabolismo , Neoplasias/patologia
6.
Arch Virol ; 162(9): 2565-2577, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28474225

RESUMO

Intact HIV-1 and exosomes can be internalized by dendritic cells (DCs) through a common pathway leading to their transmission to CD4+ T lymphocytes by means of mechanisms defined as trans-infection and trans-dissemination, respectively. We previously reported that exosomes from HIV-1-infected cells activate both uninfected quiescent CD4+ T lymphocytes, which become permissive to HIV-1, and latently infected cells, with release of HIV-1 particles. However, nothing is known about the effects of trans-dissemination of exosomes produced by HIV-1-infected cells on uninfected or latently HIV-1-infected CD4+ T lymphocytes. Here, we report that trans-dissemination of exosomes from HIV-1-infected cells induces cell activation in resting CD4+ T lymphocytes, which appears stronger with mature than immature DCs. Using purified preparations of both HIV-1 and exosomes, we observed that mDC-mediated trans-dissemination of exosomes from HIV-1-infected cells to resting CD4+ T lymphocytes induces efficient trans-infection and HIV-1 expression in target cells. Most relevant, when both mDCs and CD4+ T lymphocytes were isolated from combination anti-retroviral therapy (ART)-treated HIV-1-infected patients, trans-dissemination of exosomes from HIV-1-infected cells led to HIV-1 reactivation from the viral reservoir. In sum, our data suggest a role of exosome trans-dissemination in both HIV-1 spread in the infected host and reactivation of the HIV-1 reservoir.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD4-Positivos/virologia , Exossomos/fisiologia , HIV-1/fisiologia , Ativação Viral/fisiologia , Adulto , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/uso terapêutico , Linhagem Celular , Técnicas de Cocultura , Quimioterapia Combinada , Infecções por HIV/virologia , Humanos , Masculino
7.
Retrovirology ; 12: 87, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26502902

RESUMO

BACKGROUND: Completion of HIV life cycle in CD4(+) T lymphocytes needs cell activation. We recently reported that treatment of resting CD4(+) T lymphocytes with exosomes produced by HIV-1 infected cells induces cell activation and susceptibility to HIV replication. Here, we present data regarding the effects of these exosomes on cells latently infected with HIV-1. RESULTS: HIV-1 latently infecting U937-derived U1 cells was activated upon challenge with exosomes purified from the supernatant of U937 cells chronically infected with HIV-1. This effect was no more detectable when exosomes from cells infected with HIV-1 strains either nef-deleted or expressing a functionally defective Nef were used, indicating that Nef is the viral determinant of exosome-induced HIV-1 activation. Treatment with either TAPI-2, i.e., a specific inhibitor of the pro-TNFα-processing ADAM17 enzyme, or anti-TNFα Abs abolished HIV-1 activation. Hence, similar to what previously demonstrated for the exosome-mediated activation of uninfected CD4(+) T lymphocytes, the Nef-ADAM17-TNFα axis is part of the mechanism of latent HIV-1 activation. It is noteworthy that these observations have been reproduced using: (1) primary CD4(+) T lymphocytes latently infected with HIV-1; (2) exosomes from both primary CD4(+) T lymphocytes and macrophages acutely infected with HIV-1; (3) co-cultures of HIV-1 acutely infected CD4(+) T lymphocytes and autologous lymphocytes latently infected with HIV-1, and (4) exosomes from cells expressing a defective HIV-1. CONCLUSIONS: Our results strongly suggest that latent HIV-1 can be activated by TNFα released by cells upon ingestion of exosomes released by infected cells, and that this effect depends on the activity of exosome-associated ADAM17. These pieces of evidence shed new light on the mechanism of HIV reactivation in latent reservoirs, and might also be relevant to design new therapeutic interventions focused on HIV eradication.


Assuntos
Exossomos/fisiologia , HIV-1/fisiologia , Ativação Viral , Latência Viral , Proteínas ADAM/antagonistas & inibidores , Proteína ADAM17 , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , Células Cultivadas , Técnicas de Cocultura , Exossomos/química , Exossomos/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Células U937 , Ativação Viral/genética , Latência Viral/genética , Replicação Viral , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
8.
J Virol ; 88(19): 11529-39, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25056899

RESUMO

UNLABELLED: Resting CD4+ T lymphocytes resist human immunodeficiency virus (HIV) infection. Here, we provide evidence that exosomes from HIV-1-infected cells render resting human primary CD4+ T lymphocytes permissive to HIV-1 replication. These results were obtained with transwell cocultures of HIV-1-infected cells with quiescent CD4+ T lymphocytes in the presence of inhibitors of exosome release and were confirmed using exosomes purified from supernatants of HIV-1-infected primary CD4+ T lymphocytes. We found that the expression of HIV-1 Nef in exosome-producing cells is both necessary and sufficient for cell activation as well as HIV-1 replication in target CD4+ T lymphocytes. We also identified a Nef domain important for the effects we observed, i.e., the 62EEEE65 acidic cluster domain. In addition, we observed that ADAM17, i.e., a disintegrin and metalloprotease converting pro-tumor necrosis factor alpha (TNF-α) in its mature form, associates with exosomes from HIV-1-infected cells, and plays a key role in the HIV-1 replication in quiescent CD4+ T lymphocytes. Treatment with an inhibitor of ADAM17 abolished both activation and HIV-1 replication in resting CD4+ T lymphocytes. TNF-α is the downstream effector of ADAM17 since the treatment of resting lymphocytes with anti-TNF-α antibodies blocked the HIV-1 replication. The data presented here are consistent with a model where Nef induces intercellular communication through exosomes to activate bystander quiescent CD4+ T lymphocytes, thus stimulating viral spread. IMPORTANCE: Overall, our findings support the idea that HIV evolved to usurp the exosome-based intercellular communication network to favor its spread in infected hosts.


Assuntos
Proteínas ADAM/genética , Linfócitos T CD4-Positivos/virologia , Exossomos/imunologia , HIV-1/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Proteínas ADAM/antagonistas & inibidores , Proteínas ADAM/imunologia , Proteína ADAM17 , Anticorpos/farmacologia , Linfócitos T CD4-Positivos/imunologia , Comunicação Celular , Células Cultivadas , Cultura em Câmaras de Difusão , Inibidores Enzimáticos/farmacologia , Exossomos/química , Regulação da Expressão Gênica , Células HEK293 , HIV-1/imunologia , Humanos , Ativação Linfocitária , Estrutura Terciária de Proteína , Transdução de Sinais , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Replicação Viral , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia
9.
Retrovirology ; 11: 46, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24924541

RESUMO

BACKGROUND: A relevant burden of defective HIV-1 genomes populates PBMCs from HIV-1 infected patients, especially during HAART treatment. These viral genomes, although unable to codify for infectious viral particles, can express viral proteins which may affect functions of host cells as well as bystander ones. Cells expressing defective HIV-1 have a lifespan longer than that of cells producing infectious particles. Hence, their interaction with other cell types, including resting lymphocytes, is expected to occur frequently in tissues where HIV actively replicates. We investigated the effects of the expression of a prototype of functionally defective HIV-1 on bystander, unstimulated CD4+ T lymphocytes. RESULTS: We observed that unstimulated human primary CD4+ T lymphocytes were activated and became permissive for HIV-1 replication when co-cultivated with cells expressing a functionally defective HIV-1 (F12/Hut-78 cells). This effect depended on the presence in F12/Hut-78 supernatants of nanovesicles we identified as exosomes. By inspecting the underlying mechanism, we found that ADAM17, i.e., a disintegrin and metalloprotease converting pro-TNF-α in its mature form, associated with exosomes from F12/Hut-78 cells, and played a key role in the HIV-1 replication in unstimulated CD4+ T lymphocytes. In fact, the treatment with an inhibitor of ADAM17 abolished both activation and HIV-1 replication in unstimulated CD4+ T lymphocytes. TNF-α appeared to be the downstream effector of ADAM17 since the treatment of unstimulated lymphocytes with antibodies against TNF-α or its receptors blocked the HIV-1 replication. Finally, we found that the expression of NefF12 in exosome-producing cells was sufficient to induce the susceptibility to HIV-1 infection in unstimulated CD4+ T lymphocytes. CONCLUSIONS: Exosomes from cells expressing a functionally defective mutant can induce cell activation and HIV-1 susceptibility in unstimulated CD4+ T lymphocytes. This evidence highlights the relevance for AIDS pathogenesis of the expression of viral products from defective HIV-1 genomes.


Assuntos
Linfócitos T CD4-Positivos/virologia , Exossomos , HIV-1/fisiologia , Ativação Linfocitária , Replicação Viral , Proteínas ADAM/fisiologia , Proteína ADAM17 , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Humanos , Interleucina-2/biossíntese , Receptores Tipo I de Fatores de Necrose Tumoral/antagonistas & inibidores , Receptores Tipo II do Fator de Necrose Tumoral/antagonistas & inibidores , Fator de Necrose Tumoral alfa/biossíntese
10.
Mol Neurobiol ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39138758

RESUMO

Despite the efforts to identify fluid biomarkers to improve diagnosis of Frontotemporal dementia (FTD), only a few candidates have been described in recent years. In a previous study, we identified three circulating miRNAs (miR-92a-3p, miR-320a and miR-320b) differentially expressed in FTD patients with respect to healthy controls and/or Alzheimer's disease (AD) patients. Now, we investigated whether those changes could be due to miRNAs contained in neuron-derived extracellular vesicles (NDEVs). We also evaluated miRNAs content in total plasma EVs and in CSF samples. The analysis of plasma NDEVs carried out on 40 subjects including controls (n = 13), FTD (n = 13) and AD (n = 14) patients, showed that both miR-92a-3p and miR-320a levels were triplicated in the FTD group if compared with CT and AD patients. Increased levels of the same miRNAs were found also in CSF derived from FTD group compared to CTs. No differences were observed in expression levels of miR-320b among the three groups. Worthy of note, all miRNAs analysed were increased in an FTD cell model, MAPT IVS10 + 16 neurons. Our results suggest that miR-92a and miR-320a in NDEVs could be proposed as FTD biomarkers.

11.
Front Immunol ; 15: 1315283, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510235

RESUMO

Background: In adoptive T cell therapy, the long term therapeutic benefits in patients treated with engineered tumor specific T cells are limited by the lack of long term persistence of the infused cellular products and by the immunosuppressive mechanisms active in the tumor microenvironment. Exhausted T cells infiltrating the tumor are characterized by loss of effector functions triggered by multiple inhibitory receptors (IRs). In patients, IR blockade reverts T cell exhaustion but has low selectivity, potentially unleashing autoreactive clones and resulting in clinical autoimmune side effects. Furthermore, loss of long term protective immunity in cell therapy has been ascribed to the effector memory phenotype of the infused cells. Methods: We simultaneously redirected T cell specificity towards the NY-ESO-1 antigen via TCR gene editing (TCRED) and permanently disrupted LAG3, TIM-3 or 2B4 genes (IRKO) via CRISPR/Cas9 in a protocol to expand early differentiated long-living memory stem T cells. The effector functions of the TCRED-IRKO and IR competent (TCRED-IRCOMP) cells were tested in short-term co-culture assays and under a chronic stimulation setting in vitro. Finally, the therapeutic efficacy of the developed cellular products were evaluated in multiple myeloma xenograft models. Results: We show that upon chronic stimulation, TCRED-IRKO cells are superior to TCRED-IRCOMP cells in resisting functional exhaustion through different mechanisms and efficiently eliminate cancer cells upon tumor re-challenge in vivo. Our data indicate that TIM-3 and 2B4-disruption preserve T-cell degranulation capacity, while LAG-3 disruption prevents the upregulation of additional inhibitory receptors in T cells. Conclusion: These results highlight that TIM-3, LAG-3, and 2B4 disruptions increase the therapeutic benefit of tumor specific cellular products and suggest distinct, non-redundant roles for IRs in anti-tumor responses.


Assuntos
Linfócitos T CD8-Positivos , Mieloma Múltiplo , Humanos , Receptor Celular 2 do Vírus da Hepatite A/genética , Antígenos de Neoplasias/genética , Receptores de Antígenos de Linfócitos T/genética , Microambiente Tumoral
12.
Front Immunol ; 15: 1381091, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39136010

RESUMO

Introduction: SARS-CoV-2 pandemic still poses a significant burden on global health and economy, especially for symptoms persisting beyond the acute disease. COVID-19 manifests with various degrees of severity and the identification of early biomarkers capable of stratifying patient based on risk of progression could allow tailored treatments. Methods: We longitudinally analyzed 67 patients, classified according to a WHO ordinal scale as having Mild, Moderate, or Severe COVID-19. Peripheral blood samples were prospectively collected at hospital admission and during a 6-month follow-up after discharge. Several subsets and markers of the innate and adaptive immunity were monitored as putative factors associated with COVID-19 symptoms. Results: More than 50 immunological parameters were associated with disease severity. A decision tree including the main clinical, laboratory, and biological variables at admission identified low NK-cell precursors and CD14+CD91+ monocytes, and high CD8+ Effector Memory T cell frequencies as the most robust immunological correlates of COVID-19 severity and reduced survival. Moreover, low regulatory B-cell frequency at one month was associated with the susceptibility to develop long COVID at six months, likely due to their immunomodulatory ability. Discussion: These results highlight the profound perturbation of the immune response during COVID-19. The evaluation of specific innate and adaptive immune-cell subsets allows to distinguish between different acute and persistent COVID-19 symptoms.


Assuntos
COVID-19 , SARS-CoV-2 , Índice de Gravidade de Doença , Humanos , COVID-19/imunologia , COVID-19/mortalidade , Masculino , Feminino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Prognóstico , Idoso , Estudos Longitudinais , Adulto , Biomarcadores/sangue , Linfócitos T CD8-Positivos/imunologia , Imunidade Adaptativa , Células Matadoras Naturais/imunologia , Imunidade Inata
13.
Vaccines (Basel) ; 11(9)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37766110

RESUMO

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 enters the host by infecting nasal ciliated cells. Then, the virus can spread towards the oropharyngeal cavity and the pulmonary tissues. The antiviral adaptive immunity is promptly induced in response to the virus's detection, with virus-specific T-lymphocytes appearing before antiviral antibodies. Both the breadth and potency of antiviral CD8+ T-cell immunity have a key role in containing viral spread and disease severity. Current anti-SARS-CoV-2 vaccines do not impede the virus's replication in the upper respiratory tract, and there is consensus on the fact that the best potency of the antiviral immune response in both blood and the upper respiratory tract can be reached upon infection in vaccinees (i.e., breakthrough infection). However, whether the antiviral CD8+ T-cells developing in response to the breakthrough infection in the upper respiratory tract diffuse to the lungs is also still largely unknown. To fill the gap, we checked the CD8+ T-cell immunity elicited after infection of K18-hACE2 transgenic mice both at 3 weeks and 3 months after anti-spike vaccination. Virus-specific CD8+ T-cell immunity was monitored in both blood and the lungs before and after infection. By investigating the de novo generation of the CD8+ T-cells specific for SARS-CoV-2 viral proteins, we found that both membrane (M) and/or nucleocapsid (N)-specific CD8+ T-cells were induced at comparable levels in the blood of both unvaccinated and vaccinated mice. Conversely, N-specific CD8+ T-cells were readily found in the lungs of the control mice but were either rare or absent in those of vaccinated mice. These results support the idea that the hybrid cell immunity developing after asymptomatic/mild breakthrough infection strengthens the antiviral cell immunity in the lungs only marginally, implying that the direct exposition of viral antigens is required for the induction of an efficient antiviral cell immunity in the lungs.

14.
Mol Ther Oncolytics ; 30: 56-71, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37583386

RESUMO

Discrimination between hematopoietic stem cells and leukemic stem cells remains a major challenge for acute myeloid leukemia immunotherapy. CAR T cells specific for the CD117 antigen can deplete malignant and healthy hematopoietic stem cells before consolidation with allogeneic hematopoietic stem cell transplantation in absence of cytotoxic conditioning. Here we exploit non-viral technology to achieve early termination of CAR T cell activity to prevent incoming graft rejection. Transient expression of an anti-CD117 CAR by mRNA conferred T cells the ability to eliminate CD117+ targets in vitro and in vivo. As an alternative approach, we used a Sleeping Beauty transposon vector for the generation of CAR T cells incorporating an inducible Caspase 9 safety switch. Stable CAR expression was associated with high proportion of T memory stem cells, low levels of exhaustion markers, and potent cellular cytotoxicity. Anti-CD117 CAR T cells mediated depletion of leukemic cells and healthy hematopoietic stem cells in NSG mice reconstituted with human leukemia or CD34+ cord blood cells, respectively, and could be terminated in vivo. The use of a non-viral technology to control CAR T cell pharmacokinetic properties is attractive for a first-in-human study in patients with acute myeloid leukemia prior to hematopoietic stem cell transplantation.

16.
NPJ Vaccines ; 8(1): 83, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268624

RESUMO

Induction of effective immunity in the lungs should be a requisite for any vaccine designed to control the severe pathogenic effects generated by respiratory infectious agents. We recently provided evidence that the generation of endogenous extracellular vesicles (EVs) engineered for the incorporation of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 Nucleocapsid (N) protein induced immunity in the lungs of K18-hACE2 transgenic mice, which then can survive the lethal virus infection. However, nothing is known about the ability of the N-specific CD8+ T cell immunity in controlling viral replication in the lungs, a major pathogenic signature of severe disease in humans. To fill the gap, we investigated the immunity generated in the lungs by N-engineered EVs in terms of induction of N-specific effectors and resident memory CD8+ T lymphocytes before and after virus challenge carried out three weeks and three months after boosting. At the same time points, viral replication extents in the lungs were evaluated. Three weeks after the second immunization, virus replication was reduced in mice best responding to vaccination by more than 3-logs compared to the control group. The impaired viral replication matched with a reduced induction of Spike-specific CD8+ T lymphocytes. The antiviral effect appeared similarly strong when the viral challenge was carried out 3 months after boosting, and associated with the persistence of N-specific CD8+ T-resident memory lymphocytes. In view of the quite low mutation rate of the N protein, the present vaccine strategy has the potential to control the replication of all emerging variants.

17.
Front Immunol ; 14: 1212444, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868997

RESUMO

Introduction: Despite predicted efficacy, immunotherapy in epithelial ovarian cancer (EOC) has limited clinical benefit and the prognosis of patients remains poor. There is thus a strong need for better identifying local immune dynamics and immune-suppressive pathways limiting T-cell mediated anti-tumor immunity. Methods: In this observational study we analyzed by immunohistochemistry, gene expression profiling and flow cytometry the antigenic landscape and immune composition of 48 EOC specimens, with a focus on tumor-infiltrating lymphocytes (TILs). Results: Activated T cells showing features of partial exhaustion with a CD137+CD39+PD-1+TIM-3+CD45RA-CD62L-CD95+ surface profile were exclusively present in EOC specimens but not in corresponding peripheral blood or ascitic fluid, indicating that the tumor microenvironment might sustain this peculiar phenotype. Interestingly, while neoplastic cells expressed several tumor-associated antigens possibly able to stimulate tumor-specific TILs, macrophages provided both co-stimulatory and inhibitory signals and were more abundant in TILs-enriched specimens harboring the CD137+CD39+PD-1+TIM-3+CD45RA-CD62L-CD95+ signature. Conclusion: These data demonstrate that EOC is enriched in CD137+CD39+PD-1+TIM-3+CD45RA-CD62L-CD95+ T lymphocytes, a phenotype possibly modulated by antigen recognition on neoplastic cells and by a combination of inhibitory and co-stimulatory signals largely provided by infiltrating myeloid cells. Furthermore, we have identified immunosuppressive pathways potentially hampering local immunity which might be targeted by immunotherapeutic approaches.


Assuntos
Neoplasias Ovarianas , Linfócitos T , Humanos , Feminino , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Carcinoma Epitelial do Ovário/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Células Mieloides/metabolismo , Microambiente Tumoral
18.
Sci Adv ; 9(48): eadg8014, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38039364

RESUMO

To study and then harness the tumor-specific T cell dynamics after allogeneic hematopoietic stem cell transplant, we typed the frequency, phenotype, and function of lymphocytes directed against tumor-associated antigens (TAAs) in 39 consecutive transplanted patients, for 1 year after transplant. We showed that TAA-specific T cells circulated in 90% of patients but display a limited effector function associated to an exhaustion phenotype, particularly in the subgroup of patients deemed to relapse, where exhausted stem cell memory T cells accumulated. Accordingly, cancer-specific cytolytic functions were relevant only when the TAA-specific T cell receptors (TCRs) were transferred into healthy, genome-edited T cells. We then exploited trogocytosis and ligandome-on-chip technology to unveil the specificities of tumor-specific TCRs retrieved from the exhausted T cell pool. Overall, we showed that harnessing circulating TAA-specific and exhausted T cells allow to isolate TCRs against TAAs and previously not described acute myeloid leukemia antigens, potentially relevant for T cell-based cancer immunotherapy.


Assuntos
Leucemia Mieloide Aguda , Exaustão das Células T , Humanos , Trogocitose , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T , Antígenos de Neoplasias , Leucemia Mieloide Aguda/terapia
19.
Children (Basel) ; 9(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36291413

RESUMO

Background: Toe walking is associated with autism spectrum disorders (ASD). Correction of this "behavior" is a health challenge. The toe walker is affected by the contact refusal with the outside world: touching the ground as little as possible, trying to avoid any contact. A structured equines foot is a possible consequence. Method: We present the "Cast and Go" protocol, used in 22 idiopathic toe walker children with ASD treated from 2015 to 2020. The treatment was performed by a single senior experienced doctor with botulinum injection, ankle casts and rehabilitative therapies. All patients underwent pre- and post-treatment clinical evaluation using ankle dorsiflexion angle and casting number as treatment. We aimed to identify the intervention with the shortest acquisition time for the management of toe walking. Results: Our findings demonstrated the baseline ankle dorsiflexion angle influenced the casting number (p < 0.01) and male patients had a higher baseline ankle dorsiflexion angle than female patients (p < 0.01). No adverse events were observed. Conclusions: These findings suggested that the "Cast and Go" protocol could be a promising, dynamic and effective practice for toe walking disease in ASD patients.

20.
Methods Mol Biol ; 2504: 207-217, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35467289

RESUMO

Extracellular vesicles (EVs) are membranous particles released by all cells in the external milieu. Depending on their origin, they are given different names: exosomes are nanovesicles that originate from the endosomal compartment, whereas microvesicles bud from plasma membrane. Both contain molecules that are crucial for the onset and spreading of different pathologies, from neurodegenerative diseases to cancer, and are considered promising disease markers. On the other hand, EVs are often used as therapeutic tools, and can be engineered to carry drugs and chemicals. This chapter describes a method to produce EVs, mainly exosomes, containing the green fluorescent protein (GFP) linked to an exosome anchoring protein (Nefmut). This enables counting and tracing of fluorescent EVs by different methods, including conventional flow cytometry.


Assuntos
Micropartículas Derivadas de Células , Exossomos , Vesículas Extracelulares , Micropartículas Derivadas de Células/metabolismo , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Citometria de Fluxo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA