Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nat Mater ; 23(6): 762-767, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38212445

RESUMO

The van der Waals atomic solids of noble gases on metals at cryogenic temperatures were the first experimental examples of two-dimensional systems. Recently, such structures have also been created on surfaces under encapsulation by graphene, allowing studies at elevated temperatures through scanning tunnelling microscopy. However, for this technique, the encapsulation layer often obscures the arrangement of the noble gas atoms. Here we create Kr and Xe clusters in between two suspended graphene layers, and uncover their atomic structure through transmission electron microscopy. We show that small crystals (N < 9) arrange on the basis of the simple non-directional van der Waals interaction. Larger crystals show some deviations, possibly enabled by deformations in the encapsulating graphene lattice. We further discuss the dynamics of the clusters within the graphene sandwich, and show that although all the Xe clusters with up to N ≈ 100 remain solid, Kr clusters with already N ≈ 16 turn occasionally fluid under our experimental conditions (under a pressure of ~0.3 GPa). This study opens a way for the so-far unexplored frontier of encapsulated two-dimensional van der Waals solids with exciting possibilities for fundamental condensed-matter physics research and possible applications in quantum information technology.

2.
Small ; 19(39): e2301926, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37259696

RESUMO

Understanding electron irradiation effects is vital not only for reliable transmission electron microscopy characterization, but increasingly also for the controlled manipulation of 2D materials. The displacement cross sections of monolayer hexagonal boron nitride (hBN) are measured using aberration-corrected scanning transmission electron microscopy in near ultra-high vacuum at primary beam energies between 50 and 90 keV. Damage rates below 80 keV are up to three orders of magnitude lower than previously measured at edges under poorer residual vacuum conditions, where chemical etching appears to dominate. Notably, it is possible to create single vacancies in hBN using electron irradiation, with boron almost twice as likely as nitrogen to be ejected below 80 keV. Moreover, any damage at such low energies cannot be explained by elastic knock-on, even when accounting for the vibrations of the atoms. A theoretical description is developed to account for the lowering of the displacement threshold due to valence ionization resulting from inelastic scattering of probe electrons, modeled using charge-constrained density functional theory molecular dynamics. Although significant reductions are found depending on the constrained charge, quantitative predictions for realistic ionization states are currently not possible. Nonetheless, there is potential for defect-engineering of hBN at the level of single vacancies using electron irradiation.

3.
Nano Lett ; 21(12): 5179-5185, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34106715

RESUMO

Structural engineering is the first step toward changing properties of materials. While this can be at relative ease done for bulk materials, for example, using ion irradiation, similar engineering of 2D materials and other low-dimensional structures remains a challenge. The difficulties range from the preparation of clean and uniform samples to the sensitivity of these structures to the overwhelming task of sample-wide characterization of the subjected modifications at the atomic scale. Here, we overcome these issues using a near ultrahigh vacuum system comprised of an aberration-corrected scanning transmission electron microscope and setups for sample cleaning and manipulation, which are combined with automated atomic-resolution imaging of large sample areas and a convolutional neural network approach for image analysis. This allows us to create and fully characterize atomically clean free-standing graphene with a controlled defect distribution, thus providing the important first step toward atomically tailored two-dimensional materials.


Assuntos
Grafite , Vácuo
4.
Nano Lett ; 18(8): 5319-5323, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29945442

RESUMO

The direct manipulation of individual atoms in materials using scanning probe microscopy has been a seminal achievement of nanotechnology. Recent advances in imaging resolution and sample stability have made scanning transmission electron microscopy a promising alternative for single-atom manipulation of covalently bound materials. Pioneering experiments using an atomically focused electron beam have demonstrated the directed movement of silicon atoms over a handful of sites within the graphene lattice. Here, we achieve a much greater degree of control, allowing us to precisely move silicon impurities along an extended path, circulating a single hexagon, or back and forth between the two graphene sublattices. Even with manual operation, our manipulation rate is already comparable to the state-of-the-art in any atomically precise technique. We further explore the influence of electron energy on the manipulation rate, supported by improved theoretical modeling taking into account the vibrations of atoms near the impurities, and implement feedback to detect manipulation events in real time. In addition to atomic-level engineering of its structure and properties, graphene also provides an excellent platform for refining the accuracy of quantitative models and for the development of automated manipulation.

5.
Nano Lett ; 17(3): 1409-1416, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28140602

RESUMO

In this work we demonstrate that a free-standing van der Waals heterostructure, usually regarded as a flat object, can exhibit an intrinsic buckled atomic structure resulting from the interaction between two layers with a small lattice mismatch. We studied a freely suspended membrane of well-aligned graphene on a hexagonal boron nitride (hBN) monolayer by transmission electron microscopy (TEM) and scanning TEM (STEM). We developed a detection method in the STEM that is capable of recording the direction of the scattered electron beam and that is extremely sensitive to the local stacking of atoms. A comparison between experimental data and simulated models shows that the heterostructure effectively bends in the out-of-plane direction, producing an undulated structure having a periodicity that matches the moiré wavelength. We attribute this rippling to the interlayer interaction and also show how this affects the intralayer strain in each layer.

6.
Microsc Microanal ; 23(4): 809-817, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28532530

RESUMO

Beam damage is a major limitation in electron microscopy that becomes increasingly severe at higher resolution. One possible route to circumvent radiation damage, which forms the basis for single-particle electron microscopy and related techniques, is to distribute the dose over many identical copies of an object. For the acquisition of low-dose data, ideally no dose should be applied to the region of interest before the acquisition of data. We present an automated approach that can collect large amounts of data efficiently by acquiring images in a user-defined area-of-interest with atomic resolution. We demonstrate that the stage mechanics of the Nion UltraSTEM, combined with an intelligent algorithm to move the sample, allow the automated acquisition of atomically resolved images from micron-sized areas of a graphene substrate. Moving the sample stage automatically in a regular pattern over the area-of-interest enables the collection of data from pristine sample regions without exposing them to the electron beam before recording an image. Therefore, it is possible to obtain data with minimal dose (no prior exposure during focusing), which is only limited by the minimum signal needed for data processing. This enables us to minimize beam-induced damage in the sample and to acquire large data sets within a reasonable amount of time.

7.
Nano Lett ; 15(9): 5944-9, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26161575

RESUMO

Graphene has many claims to fame: it is the thinnest possible membrane, it has unique electronic and excellent mechanical properties, and it provides the perfect model structure for studying materials science at the atomic level. However, for many practical studies and applications the ordered hexagon arrangement of carbon atoms in graphene is not directly suitable. Here, we show that the atoms can be locally either removed or rearranged into a random pattern of polygons using a focused ion beam (FIB). The atomic structure of the disordered regions is confirmed with atomic-resolution scanning transmission electron microscopy images. These structural modifications can be made on macroscopic scales with a spatial resolution determined only by the size of the ion beam. With just one processing step, three types of structures can be defined within a graphene layer: chemically inert graphene, chemically active amorphous 2D carbon, and empty areas. This, along with the changes in properties, gives promise that FIB patterning of graphene will open the way for creating all-carbon heterostructures to be used in fields ranging from nanoelectronics and chemical sensing to composite materials.

8.
Phys Rev Lett ; 113(11): 115501, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25259987

RESUMO

We demonstrate that 60-keV electron irradiation drives the diffusion of threefold-coordinated Si dopants in graphene by one lattice site at a time. First principles simulations reveal that each step is caused by an electron impact on a C atom next to the dopant. Although the atomic motion happens below our experimental time resolution, stochastic analysis of 38 such lattice jumps reveals a probability for their occurrence in a good agreement with the simulations. Conversions from three- to fourfold coordinated dopant structures and the subsequent reverse process are significantly less likely than the direct bond inversion. Our results thus provide a model of nondestructive and atomically precise structural modification and detection for two-dimensional materials.

9.
Nano Lett ; 13(5): 1934-40, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23547751

RESUMO

In two-dimensional samples, all atoms are at the surface and thereby exposed for probing and manipulation by physical or chemical means from both sides. Here, we show that we can access the same point on both surfaces of a few-layer graphene membrane simultaneously, using a dual-probe scanning tunneling microscopy (STM) setup. At the closest point, the two probes are separated only by the thickness of the graphene membrane. This allows us for the first time to directly measure the deformations induced by one STM probe on a free-standing membrane with an independent second probe. We reveal different regimes of stability of few-layer graphene and show how the STM probes can be used as tools to shape the membrane in a controlled manner. Our work opens new avenues for the study of mechanical and electronic properties of two-dimensional materials.

10.
Micron ; 184: 103667, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38850967

RESUMO

Fabricating dispersed single atoms and size-controlled metal nanoclusters remains a difficult challenge due to sintering. Here, we demonstrate that atoms and clusters can be immobilized using atomically clean defect-engineered graphene as the matrix. The graphene is first cleaned of surface contamination with laser heating, after which low-energy Ar irradiation is used to create spatially well-separated vacancies into it. Metal atoms are then evaporated either via thermal or ebeam evaporation onto graphene, where they diffuse until being trapped into a vacancy. The density of embedded structures can be controlled through irradiation dose, and the size of the structures through evaporation time. The resulting structures are confirmed through atomic-resolution scanning transmission electron microscopy and electron energy loss spectroscopy. We demonstrate here incorporation of Al, Ti, Fe, Ag and Au single atoms or nanoclusters, but the method should work equally well for other elements.

11.
NPJ 2D Mater Appl ; 7(1): 2, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665487

RESUMO

The presence of metal atoms at the edges of graphene nanoribbons (GNRs) opens new possibilities toward tailoring their physical properties. We present here formation and high-resolution characterization of indium (In) chains on the edges of graphene-supported GNRs. The GNRs are formed when adsorbed hydrocarbon contamination crystallizes via laser heating into small ribbon-like patches of a second graphitic layer on a continuous graphene monolayer and onto which In is subsequently physical vapor deposited. Using aberration-corrected scanning transmission electron microscopy (STEM), we find that this leads to the preferential decoration of the edges of the overlying GNRs with multiple In atoms along their graphitic edges. Electron-beam irradiation during STEM induces migration of In atoms along the edges of the GNRs and triggers the formation of longer In atom chains during imaging. Density functional theory (DFT) calculations of GNRs similar to our experimentally observed structures indicate that both bare zigzag (ZZ) GNRs as well as In-terminated ZZ-GNRs have metallic character, whereas in contrast, In termination induces metallicity for otherwise semiconducting armchair (AC) GNRs. Our findings provide insights into the creation and properties of long linear metal atom chains at graphitic edges.

12.
2d Mater ; 9(3)2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35694040

RESUMO

Substituting heteroatoms into graphene can tune its properties for applications ranging from catalysis to spintronics. The further recent discovery that covalent impurities in graphene can be manipulated at atomic precision using a focused electron beam may open avenues towards sub-nanometer device architectures. However, the preparation of clean samples with a high density of dopants is still very challenging. Here, we report vacancy-mediated substitution of aluminium into laser-cleaned graphene, and without removal from our ultra-high vacuum apparatus, study their dynamics under 60 keV electron irradiation using aberration-corrected scanning transmission electron microscopy and spectroscopy. Three- and four-coordinated Al sites are identified, showing excellent agreement with ab initio predictions including binding energies and electron energy-loss spectrum simulations. We show that the direct exchange of carbon and aluminium atoms predicted earlier occurs under electron irradiation, although unexpectedly it is less probable than the same process for silicon. We also observe a previously unknown nitrogen-aluminium exchange that occurs at Al─N double-dopant sites at graphene divacancies created by our plasma treatment.

13.
Adv Mater ; 34(9): e2106922, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34877720

RESUMO

Heterostructures composed of 2D materials are already opening many new possibilities in such fields of technology as electronics and magnonics, but far more could be achieved if the number and diversity of 2D materials were increased. So far, only a few dozen 2D crystals have been extracted from materials that exhibit a layered phase in ambient conditions, omitting entirely the large number of layered materials that may exist at other temperatures and pressures. This work demonstrates how such structures can be stabilized in 2D van der Waals (vdw) stacks under room temperature via growing them directly in graphene encapsulation by using graphene oxide as the template material. Specifically, an ambient stable 2D structure of copper and iodine, a material that normally only occurs in layered form at elevated temperatures between 645 and 675 K, is produced. The results establish a simple route to the production of more exotic phases of materials that would otherwise be difficult or impossible to stabilize for experiments in ambient.

14.
Microsc Microanal ; 17(6): 866-71, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22050969

RESUMO

To analyze nanocrystalline structures quantitatively in 3D, a novel method is presented based on electron diffraction. It allows determination of the average size and morphology of the coherently scattering domains (CSD) in a straightforward way without the need to prepare multiple sections. The method is applicable to all kinds of bulk nanocrystalline materials. As an example, the average size of the CSD in nanocrystalline FeAl made by severe plastic deformation is determined in 3D. Assuming ellipsoidal CSD, it is deduced that the CSD have a width of 19 ± 2 nm, a length of 18 ± 1 nm, and a height of 10 ± 1 nm.


Assuntos
Ligas/análise , Teste de Materiais/métodos , Microscopia Eletrônica de Transmissão/métodos , Nanopartículas/análise , Alumínio/análise , Elétrons , Processamento de Imagem Assistida por Computador , Ferro/análise , Teste de Materiais/instrumentação , Microscopia Eletrônica de Transmissão/instrumentação , Nanopartículas/ultraestrutura , Tamanho da Partícula
15.
ACS Nano ; 15(9): 14373-14383, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34410707

RESUMO

Single atoms and few-atom nanoclusters are of high interest in catalysis and plasmonics, but pathways for their fabrication and placement remain scarce. We report here the self-assembly of room-temperature-stable single indium (In) atoms and few-atom In clusters (2-6 atoms) that are anchored to substitutional silicon (Si) impurity atoms in suspended monolayer graphene membranes. Using atomically resolved scanning transmission electron microscopy (STEM), we find that the symmetry of the In structures is critically determined by the three- or fourfold coordination of the Si "anchors". All structures are produced without electron-beam induced materials modification. In turn, when activated by electron beam irradiation in the STEM, we observe in situ the formation, restructuring, and translation of the Si-anchored In structures. Our results on In-Si-graphene provide a materials system for controlled self-assembly and heteroatomic anchoring of single atoms and few-atom nanoclusters on graphene.

16.
ACS Appl Mater Interfaces ; 12(23): 26313-26319, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32400150

RESUMO

Dynamic surface modification of suspended graphene at high temperatures was directly observed with in situ scanning transmission electron microscopy (STEM) measurements. The suspended graphene devices were prepared on a SiN membrane substrate with a hole so that STEM observations could be conducted during Joule heating. Current-voltage characteristics of suspended graphene devices inside the STEM chamber were measured while monitoring and controlling the temperature of graphene by estimating the electrical power of the devices. During the in situ STEM observation at high temperatures, residual hydrocarbon adsorbents that had remained on graphene effectively evaporated creating large, atomically clean graphene areas. At other places, dynamic changes in the shape, position, and orientation of adsorbents could be directly observed. The temperature of the suspended graphene sample was estimated to reach up to 2000 K during the experiment, making graphene an efficient high-temperature micrometer-sized electron-transparent hot plate for future experiments in microscopes.

17.
Ultramicroscopy ; 203: 76-81, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30739713

RESUMO

Transmission electron microscopy (TEM) is carried out in vacuum to minimize the interaction of the imaging electrons with gas molecules while passing through the microscope column. Nevertheless, in typical devices, the pressure remains at 10-7 mbar or above, providing a large number of gas molecules for the electron beam to crack, which can lead to structural changes in the sample. Here, we describe experiments carried out in a modified scanning TEM (STEM) instrument, based on the Nion UltraSTEM 100. In this instrument, the base pressure at the sample is around 2×10-10 mbar, and can be varied up to 10-6 mbar through introduction of gases directly into the objective area while maintaining atomic resolution imaging conditions. We show that air leaked into the microscope column during the experiment is efficient in cleaning graphene samples from contamination, but ineffective in damaging the pristine lattice. Our experiments also show that exposure to O2 and H2O lead to a similar result, oxygen providing an etching effect nearly twice as efficient as water, presumably due to the two O atoms per molecule. H2 and N2 environments have no influence on etching. These results show that the residual gas environment in typical TEM instruments can have a large influence on the observations, and show that chemical etching of carbon-based structures can be effectively carried out with oxygen.

18.
Nat Commun ; 10(1): 4570, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594951

RESUMO

Along with hydrogen, carbon, nitrogen and oxygen are the arguably most important elements for organic chemistry. Due to their rich variety of possible bonding configurations, they can form a staggering number of compounds. Here, we present a detailed analysis of nitrogen and oxygen bonding configurations in a defective carbon (graphene) lattice. Using aberration-corrected scanning transmission electron microscopy and single-atom electron energy loss spectroscopy, we directly imaged oxygen atoms in graphene oxide, as well as nitrogen atoms implanted into graphene. The collected data allows us to compare nitrogen and oxygen bonding configurations, showing clear differences between the two elements. As expected, nitrogen forms either two or three bonds with neighboring carbon atoms, with three bonds being the preferred configuration. Oxygen, by contrast, tends to bind with only two carbon atoms. Remarkably, however, triple-coordinated oxygen with three carbon neighbors is also observed, a configuration that is exceedingly rare in organic compounds.

19.
J Phys Chem C Nanomater Interfaces ; 123(20): 13136-13140, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31156738

RESUMO

The chemical and electrical properties of single-walled carbon nanotubes (SWCNTs) and graphene can be modified by the presence of covalently bound impurities. Although this can be achieved by introducing chemical additives during synthesis, it often hinders growth and leads to limited crystallite size and quality. Here, through the simultaneous formation of vacancies with low-energy argon plasma and the thermal activation of adatom diffusion by laser irradiation, silicon impurities are incorporated into the lattice of both materials. After an exposure of ∼1 ion/nm2, we find Si-substitution densities of 0.15 nm-2 in graphene and 0.05 nm-2 in nanotubes, as revealed by atomically resolved scanning transmission electron microscopy. In good agreement with predictions of Ar irradiation effects in SWCNTs, we find Si incorporated in both mono- and divacancies, with ∼2/3 being of the first type. Controlled inclusion of impurities in the quasi-1D and -2D carbon lattices may prove useful for applications such as gas sensing, and a similar approach might also be used to substitute other elements with migration barriers lower than that of carbon.

20.
ACS Nano ; 12(8): 8512-8519, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30016070

RESUMO

Molecular self-assembly due to chemical interactions is the basis of bottom-up nanofabrication, whereas weaker intermolecular forces dominate on the scale of macromolecules. Recent advances in synthesis and characterization have brought increasing attention to two- and mixed-dimensional heterostructures, and it has been recognized that van der Waals (vdW) forces within the structure may have a significant impact on their morphology. Here, we suspend single-walled carbon nanotubes (SWCNTs) on graphene to create a model system for the study of a 1D-2D molecular interface through atomic-resolution scanning transmission electron microscopy observations. When brought into contact, the radial deformation of SWCNTs and the emergence of long-range linear grooves in graphene revealed by the three-dimensional reconstruction of the heterostructure are observed. These topographic features are strain-correlated but show no sensitivity to carbon nanotube helicity, electronic structure, or stacking order. Finally, despite the random deposition of the nanotubes, we show that the competition between strain and vdW forces results in aligned carbon-carbon interfaces spanning hundreds of nanometers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA