Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 614(7949): 752-761, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36599369

RESUMO

Acute viral infections can have durable functional impacts on the immune system long after recovery, but how they affect homeostatic immune states and responses to future perturbations remain poorly understood1-4. Here we use systems immunology approaches, including longitudinal multimodal single-cell analysis (surface proteins, transcriptome and V(D)J sequences) to comparatively assess baseline immune statuses and responses to influenza vaccination in 33 healthy individuals after recovery from mild, non-hospitalized COVID-19 (mean, 151 days after diagnosis) and 40 age- and sex-matched control individuals who had never had COVID-19. At the baseline and independent of time after COVID-19, recoverees had elevated T cell activation signatures and lower expression of innate immune genes including Toll-like receptors in monocytes. Male individuals who had recovered from COVID-19 had coordinately higher innate, influenza-specific plasmablast, and antibody responses after vaccination compared with healthy male individuals and female individuals who had recovered from COVID-19, in part because male recoverees had monocytes with higher IL-15 responses early after vaccination coupled with elevated prevaccination frequencies of 'virtual memory'-like CD8+ T cells poised to produce more IFNγ after IL-15 stimulation. Moreover, the expression of the repressed innate immune genes in monocytes increased by day 1 to day 28 after vaccination in recoverees, therefore moving towards the prevaccination baseline of the healthy control individuals. By contrast, these genes decreased on day 1 and returned to the baseline by day 28 in the control individuals. Our study reveals sex-dimorphic effects of previous mild COVID-19 and suggests that viral infections in humans can establish new immunological set-points that affect future immune responses in an antigen-agnostic manner.


Assuntos
COVID-19 , Imunidade Inata , Memória Imunológica , Vacinas contra Influenza , Caracteres Sexuais , Linfócitos T , Vacinação , Feminino , Humanos , Masculino , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Interleucina-15/imunologia , Receptores Toll-Like/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Monócitos , Imunidade Inata/genética , Imunidade Inata/imunologia , Análise de Célula Única , Voluntários Saudáveis
2.
Proc Natl Acad Sci U S A ; 116(30): 15194-15199, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31296560

RESUMO

Several next-generation (universal) influenza vaccines and broadly neutralizing antibodies (bNAbs) are in clinical development. Some of these mediate inhibitions of virus replication at the postentry stage or use Fc-dependent mechanisms. Nonneutralizing antibodies have the potential to mediate enhancement of viral infection or disease. In the current study, two monoclonal antibodies (MAbs) 72/8 and 69/1, enhanced respiratory disease (ERD) in mice following H3N2 virus challenge by demonstrating increased lung pathology and changes in lung cytokine/chemokine levels. MAb 78/2 caused changes in the lung viral loads in a dose-dependent manner. Both MAbs increased HA sensitivity to trypsin cleavage at a higher pH range, suggesting MAb-induced conformational changes. pHrodo-labeled virus particles' entry and residence time in the endocytic compartment were tracked during infection of Madin-Darby canine kidney (MDCK) cells. Both MAbs reduced H3N2 virus residence time in the endocytic pathway, suggesting faster virus fusion kinetics. Structurally, 78/2 and 69/1 Fabs bound the globular head or base of the head domain of influenza hemagglutinin (HA), respectively, and induced destabilization of the HA stem domain. Together, this study describes Mab-induced destabilization of the influenza HA stem domain, faster kinetics of influenza virus fusion, and ERD in vivo. The in vivo animal model and in vitro assays described could augment preclinical safety evaluation of antibodies and next-generation influenza vaccines that generate antibodies which do not block influenza virus-receptor interaction.


Assuntos
Anticorpos Monoclonais/efeitos adversos , Anticorpos Antivirais/efeitos adversos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Pulmão/virologia , Infecções por Orthomyxoviridae/virologia , Internalização do Vírus/efeitos dos fármacos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/química , Anticorpos Antivirais/metabolismo , Sítios de Ligação , Cães , Endocitose/efeitos dos fármacos , Endocitose/imunologia , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A Subtipo H3N2/patogenicidade , Pulmão/imunologia , Pulmão/patologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Ligação Proteica , Proteólise , Carga Viral/efeitos dos fármacos , Vírion/efeitos dos fármacos , Vírion/imunologia , Vírion/patogenicidade , Replicação Viral/efeitos dos fármacos
3.
J Transl Med ; 15(1): 155, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28693586

RESUMO

BACKGROUND: Changes in adaptive immune cells after chemotherapy in adult acute myeloid leukemia (AML) may have implications for the success of immunotherapy. This study was designed to determine the functional capacity of the immune system in adult patients with AML who have completed chemotherapy and are potential candidates for immunotherapy. METHODS: We used the response to seasonal influenza vaccination as a surrogate for the robustness of the immune system in 10 AML patients in a complete remission post-chemotherapy and performed genetic, phenotypic, and functional characterization of adaptive immune cell subsets. RESULTS: Only 2 patients generated protective titers in response to vaccination, and a majority of patients had abnormal frequencies of transitional and memory B-cells. B-cell receptor sequencing showed a B-cell repertoire with little evidence of somatic hypermutation in most patients. Conversely, frequencies of T-cell populations were similar to those seen in healthy controls, and cytotoxic T-cells demonstrated antigen-specific activity after vaccination. Effector T-cells had increased PD-1 expression in AML patients least removed from chemotherapy. CONCLUSION: Our results suggest that while some aspects of cellular immunity recover quickly, humoral immunity is incompletely reconstituted in the year following intensive cytotoxic chemotherapy for AML. The observed B-cell abnormalities may explain the poor response to vaccination often seen in AML patients after chemotherapy. Furthermore, the uncoupled recovery of B-cell and T-cell immunity and increased PD-1 expression shortly after chemotherapy might have implications for the success of several modalities of immunotherapy.


Assuntos
Linfócitos B/imunologia , Imunidade , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/imunologia , Adulto , Idoso , Anticorpos Antivirais/imunologia , Quimioterapia de Consolidação , Demografia , Feminino , Humanos , Memória Imunológica , Vacinas contra Influenza/imunologia , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/metabolismo , Indução de Remissão , Linfócitos T/imunologia , Fatores de Tempo , Doadores de Tecidos , Resultado do Tratamento , Vacinação
4.
Proc Natl Acad Sci U S A ; 110(1): 264-9, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23175789

RESUMO

Affinity maturation refines a naive B-cell response by selecting mutations in antibody variable domains that enhance antigen binding. We describe a B-cell lineage expressing broadly neutralizing influenza virus antibodies derived from a subject immunized with the 2007 trivalent vaccine. The lineage comprises three mature antibodies, the unmutated common ancestor, and a common intermediate. Their heavy-chain complementarity determining region inserts into the conserved receptor-binding pocket of influenza HA. We show by analysis of structures, binding kinetics and long time-scale molecular dynamics simulations that antibody evolution in this lineage has rigidified the initially flexible heavy-chain complementarity determining region by two nearly independent pathways and that this preconfiguration accounts for most of the affinity gain. The results advance our understanding of strategies for developing more broadly effective influenza vaccines.


Assuntos
Anticorpos Neutralizantes/genética , Anticorpos Antivirais/genética , Linfócitos B/imunologia , Sítios de Ligação de Anticorpos/genética , Vacinas contra Influenza/imunologia , Modelos Moleculares , Orthomyxoviridae/imunologia , Sequência de Aminoácidos , Anticorpos Neutralizantes/química , Cristalografia por Raios X , Evolução Molecular , Fragmentos Fab das Imunoglobulinas/química , Região Variável de Imunoglobulina/genética , Simulação de Dinâmica Molecular , Dados de Sequência Molecular
5.
J Infect Dis ; 209(12): 1860-9, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24604819

RESUMO

BACKGROUND: Highly pathogenic avian influenza A(H5N1) causes severe infections in humans. We generated 2 influenza A(H5N1) live attenuated influenza vaccines for pandemic use (pLAIVs), but they failed to elicit a primary immune response. Our objective was to determine whether the vaccines primed or established long-lasting immunity that could be detected by administration of inactivated subvirion influenza A(H5N1) vaccine (ISIV). METHODS: The following groups were invited to participate in the study: persons who previously received influenza A(H5N1) pLAIV; persons who previously received an irrelevant influenza A(H7N3) pLAIV; and community members who were naive to influenza A(H5N1) and LAIV. LAIV-experienced subjects received a single 45-µg dose of influenza A(H5N1) ISIV. Influenza A(H5N1)- and LAIV-naive subjects received either 1 or 2 doses of ISIV. RESULTS: In subjects who had previously received antigenically matched influenza A(H5N1) pLAIV followed by 1 dose of ISIV compared with those who were naive to influenza A(H5N1) and LAIV and received 2 doses of ISIV, we observed an increased frequency of antibody response (82% vs 50%, by the hemagglutination inhibition assay) and a significantly higher antibody titer (112 vs 76; P = .04). The affinity of antibody and breadth of cross-clade neutralization was also enhanced in influenza A(H5N1) pLAIV-primed subjects. CONCLUSIONS: ISIV administration unmasked long-lasting immunity in influenza A(H5N1) pLAIV recipients, with a rapid, high-titer, high-quality antibody response that was broadly cross-reactive across several influenza A(H5N1) clades. CLINICAL TRIALS REGISTRATION: NCT01109329.


Assuntos
Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/uso terapêutico , Adulto , Anticorpos Antivirais/sangue , Afinidade de Anticorpos , Formação de Anticorpos/imunologia , Reações Cruzadas , Feminino , Voluntários Saudáveis , Testes de Inibição da Hemaglutinação , Humanos , Vírus da Influenza A Subtipo H7N3/imunologia , Vacinas contra Influenza/imunologia , Masculino , Pessoa de Meia-Idade , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/uso terapêutico , Adulto Jovem
6.
J Virol ; 87(10): 5564-76, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23468500

RESUMO

Whole-body bioimaging was used to study dissemination of vaccinia virus (VACV) in normal and in immune deficient (nu(-)/nu(-)) mice protected from lethality by postchallenge administration of ST-246. Total fluxes were recorded in the liver, spleen, lungs, and nasal cavities of live mice after intranasal infection with a recombinant IHD-J-Luc VACV expressing luciferase. Areas under the flux curve were calculated for individual mice to assess viral loads. Treatment for 2 to 5 days of normal BALB/c mice with ST-246 at 100 mg/kg starting 24 h postchallenge conferred 100% protection and reduced viral loads in four organs compared to control mice. Mice also survived after 5 days of treatment with ST-246 at 30 mg/kg, and yet the viral loads and poxes were higher in these mice compared to 100-mg/kg treatment group. Nude mice were not protected by ST-246 alone or by 10 million adoptively transferred T cells. In contrast, nude mice that received T cells and 7-day treatment with ST-246 survived infection and exhibited reduced viral loads compared to nonreconstituted and ST-246-treated mice after ST-246 was stopped. Similar protection of nude mice was achieved using adoptively transferred 1.0 and 0.1 million, but not 0.01 million, purified T cells or CD4(+) or CD8(+) T cells in conjunction with ST-246 treatment. These data suggest that ST-246 protects immunocompetent mice from lethality and reduces viral dissemination in internal organs and poxvirus lesions. Furthermore, immune-deficient animals with partial T cell reconstitution can control virus replication after a course of ST-246 and survive lethal vaccinia virus challenge.


Assuntos
Transferência Adotiva , Antivirais/administração & dosagem , Benzamidas/administração & dosagem , Isoindóis/administração & dosagem , Linfócitos T/imunologia , Vaccinia virus/patogenicidade , Vacínia/patologia , Vacínia/terapia , Estruturas Animais/virologia , Animais , Modelos Animais de Doenças , Feminino , Genes Reporter , Hospedeiro Imunocomprometido , Luciferases/análise , Luciferases/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Coloração e Rotulagem , Análise de Sobrevida , Resultado do Tratamento , Carga Viral , Imagem Corporal Total
7.
Blood ; 120(24): 4850-8, 2012 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-23074274

RESUMO

CD27(+) memory B cells are reduced in the blood of patients with chronic granulomatous disease (CGD) for reasons and consequences that remain unclear. Here we confirm not only decreased CD27(+) but also IgG(+) B cells in the blood of CGD patients compared with healthy donors (HDs). However, among IgG(+) B cells, the ratio of CD27(-) to CD27(+) was significantly higher in CGD patients compared with HDs. Similar to conventional memory B cells, CD27(-)IgG(+) B cells of CGD patients expressed activation markers and had undergone somatic hypermutation, albeit at levels lower than their CD27(+) counterparts. Functional analyses revealed slight reductions in frequencies of total IgG but not influenza-specific memory B-cell responses, as measured by Elispot in CGD patients compared with HDs. Serum IgG levels and influenza-specific antibodies were also normal in these CGD patients. Finally, we provide evidence that influenza-specific memory B cells can be present within the CD27(-)IgG(+) B-cell compartment. Together, these findings show that, despite reduced circulating CD27(+) memory B cells, CGD patients maintain an intact humoral immunologic memory, with potential contribution from CD27(-) B cells.


Assuntos
Linfócitos B/imunologia , Doença Granulomatosa Crônica/imunologia , Imunoglobulina G/imunologia , Memória Imunológica/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Adulto , Linfócitos B/metabolismo , ELISPOT , Feminino , Citometria de Fluxo , Doença Granulomatosa Crônica/sangue , Doença Granulomatosa Crônica/genética , Humanos , Imunoglobulina G/sangue , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Cadeias kappa de Imunoglobulina/genética , Cadeias kappa de Imunoglobulina/imunologia , Cadeias lambda de Imunoglobulina/genética , Cadeias lambda de Imunoglobulina/imunologia , Memória Imunológica/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Mutação , NADPH Oxidase 2 , NADPH Oxidases/genética , NADPH Oxidases/imunologia , Hipermutação Somática de Imunoglobulina , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/sangue , Adulto Jovem
8.
Proc Natl Acad Sci U S A ; 108(34): 14216-21, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21825125

RESUMO

Seasonal antigenic drift of circulating influenza virus leads to a requirement for frequent changes in vaccine composition, because exposure or vaccination elicits human antibodies with limited cross-neutralization of drifted strains. We describe a human monoclonal antibody, CH65, obtained by isolating rearranged heavy- and light-chain genes from sorted single plasma cells, coming from a subject immunized with the 2007 trivalent influenza vaccine. The crystal structure of a complex of the hemagglutinin (HA) from H1N1 strain A/Solomon Islands/3/2006 with the Fab of CH65 shows that the tip of the CH65 heavy-chain complementarity determining region 3 (CDR3) inserts into the receptor binding pocket on HA1, mimicking in many respects the interaction of the physiological receptor, sialic acid. CH65 neutralizes infectivity of 30 out of 36 H1N1 strains tested. The resistant strains have a single-residue insertion near the rim of the sialic-acid pocket. We conclude that broad neutralization of influenza virus can be achieved by antibodies with contacts that mimic those of the receptor.


Assuntos
Anticorpos Neutralizantes/imunologia , Especificidade de Anticorpos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Receptores Virais/imunologia , Sequência de Aminoácidos , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/química , Anticorpos Antivirais/imunologia , Afinidade de Anticorpos/imunologia , Sítios de Ligação , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/imunologia , Glicosilação , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Ligação Proteica
9.
J Infect Dis ; 208(3): 413-7, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23633404

RESUMO

DNA priming improves the response to inactivated influenza A(H5N1) vaccination. We compared the immunogenicity of an H5 DNA prime (using strain A/Indonesia/5/2005) followed by an H5N1 monovalent inactivated vaccine boost at 4, 8, 12, 16, or 24 weeks to that of 2 doses of H5N1 monovalent inactivated vaccine in adults. Antibody epitope repertoires were elucidated by genome-fragment phage-display library analysis, and antibody avidities for HA1 and HA2 domains were measured by surface plasmon resonance. H5 DNA priming expanded the H5-specific antibody epitope repertoire and enhanced antibody avidity to the HA1 (but not the HA2) domain in an interval-dependent manner. Enhanced HA1 binding and avidity after an interval of ≥12 weeks between prime and boost correlated with improved neutralization of homologous and heterologous H5N1 strains. Clinical trials registration NCT01086657.


Assuntos
Anticorpos Antivirais/sangue , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Vacinação/métodos , Adolescente , Adulto , Anticorpos Neutralizantes/sangue , Afinidade de Anticorpos , Epitopos/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ressonância de Plasmônio de Superfície , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Adulto Jovem
10.
Nat Med ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013430

RESUMO

Global emergence of highly pathogenic avian influenza (HPAI) H5N1 clade 2.3.4.4b viruses, and their transmission to dairy cattle and animals, including humans, pose a significant global public health threat. Therefore, development of effective vaccines and therapeutics against H5N1 clade 2.3.4.4b virus is considered a public health priority. In the U.S., three H5N1 vaccines derived from earlier strains of HPAI H5N1 (A/Vietnam; clade 1 and A/Indonesia; clade 2.1) virus, with (MF59 or AS03) or without adjuvants, are licensed and stockpiled for pre-pandemic preparedness, but whether they can elicit neutralizing antibodies against circulating H5N1 clade 2.3.4.4b viruses is unknown. In this study, we evaluated the binding, hemagglutination inhibition and neutralizing antibody response generated following vaccination of adults with the three licensed vaccines. Individuals vaccinated with the two adjuvanted licensed H5N1 vaccines generate cross-reactive binding and cross-neutralizing antibodies against the HPAI clade 2.3.4.4b A/Astrakhan/3212/2020 virus. Seroconversion rates of 60% to 95% against H5 clade 2.3.4.4b were observed following two doses of AS03-adjuvanted-A/Indonesia or three doses of MF59-adjuvanted-A/Vietnam vaccine. These findings suggest that the stockpiled U.S. licensed adjuvanted H5N1 vaccines generate cross-neutralizing antibodies against circulating HPAI H5N1 clade 2.3.4.4b in humans and may be useful as bridging vaccines until updated H5N1 vaccines become available.

11.
J Virol ; 85(3): 1246-56, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21084473

RESUMO

The impending influenza virus pandemic requires global vaccination to prevent large-scale mortality and morbidity, but traditional influenza virus vaccine production is too slow for rapid responses. We have developed bacterial systems for expression and purification of properly folded functional hemagglutinin as a rapid response to emerging pandemic strains. A recombinant H5N1 (A/Vietnam/1203/2004) hemagglutinin globular domain (HA1) was produced in Escherichia coli under controlled redox refolding conditions. Importantly, the properly folded HA1(1-320), i.e., HA1 lacking amino acids 321 to 330, contained ≥75% functional oligomers without addition of foreign oligomerization sequence. Site-directed mutagenesis mapped the oligomerization signal to the HA1 N-terminal Ile-Cys-Ile residues at positions 3 to 5. The purified HA1 oligomers (but not monomers) bound fetuin and agglutinated red blood cells. Upon immunization of rabbits, the oligomeric HA1(1-320) elicited potent neutralizing antibodies against homologous and heterologous H5N1 viruses more rapidly than HA1(28-320) containing only monomers. Ferrets vaccinated with oligomeric HA1 (but not monomeric HA1 with the N terminus deleted) at 15 and 3 µg/dose were fully protected from lethality and weight loss after challenge with homologous H5N1 (A/Vietnam/1203/2004, clade 1) virus, as well as heterologous clade 2.2 H5N1 (A/WooperSwan/Mongolia/244/2005) virus. Protection was associated with a significant reduction in viral loads in the nasal washes of homologous and heterologous virus challenged ferrets. This is the first study that describes the presence of an N-terminal oligomerization sequence in the globular domain of influenza virus hemagglutinin. Our findings suggest that functional oligomeric rHA1-based vaccines can be produced efficiently in bacterial systems and can be easily upscaled in response to a pandemic influenza virus threat.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Modelos Animais de Doenças , Escherichia coli/genética , Feminino , Furões , Vetores Genéticos , Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/administração & dosagem , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/isolamento & purificação , Virus da Influenza A Subtipo H5N1/genética , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Vacinas contra Influenza/isolamento & purificação , Mucosa Nasal/virologia , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/prevenção & controle , Ligação Proteica , Multimerização Proteica , Coelhos , Análise de Sobrevida , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/isolamento & purificação , Carga Viral , alfa-Fetoproteínas/metabolismo
12.
J Virol ; 85(17): 9147-58, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21715493

RESUMO

Whole-body bioimaging was employed to study the effects of passive immunotherapies on lethality and viral dissemination in BALB/c mice challenged with recombinant vaccinia viruses expressing luciferase. WRvFire and IHD-J-Luc vaccinia viruses induced lethality with similar times to death following intranasal infection, but WRvFire replicated at higher levels than IHD-J-Luc in the upper and lower respiratory tracts. Three types of therapies were tested: licensed human anti-vaccinia virus immunoglobulin intravenous (VIGIV); recombinant anti-vaccinia virus immunoglobulin (rVIG; Symphogen, Denmark), an investigational product containing a mixture of 26 human monoclonal antibodies (HuMAbs) against mature virion (MV) and enveloped virion (EV); and HuMAb compositions targeting subsets of MV or EV proteins. Bioluminescence recorded daily showed that pretreatment with VIGIV (30 mg) or with rVIG (100 µg) on day -2 protected mice from death but did not prevent viral replication at the site of inoculation and dissemination to internal organs. Compositions containing HuMAbs against MV or EV proteins were protective in both infection models at 100 µg per animal, but at 30 µg, only anti-EV antibodies conferred protection. Importantly, the t statistic of the mean total fluxes revealed that viral loads in surviving mice were significantly reduced in at least 3 sites for 3 consecutive days (days 3 to 5) postchallenge, while significant reduction for 1 or 2 days in any individual site did not confer protection. Our data suggest that reduction of viral replication at multiple sites, including respiratory tract, spleen, and liver, as monitored by whole-body bioluminescence can be used to predict the effectiveness of passive immunotherapies in mouse models.


Assuntos
Estruturas Animais/virologia , Imunização Passiva/métodos , Sistema Respiratório/virologia , Vaccinia virus/patogenicidade , Vacínia/mortalidade , Vacínia/prevenção & controle , Carga Viral , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Antivirais/administração & dosagem , Modelos Animais de Doenças , Feminino , Genes Reporter , Imunoglobulina G/administração & dosagem , Luciferases/metabolismo , Medições Luminescentes , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/administração & dosagem , Doenças dos Roedores/mortalidade , Doenças dos Roedores/prevenção & controle , Coloração e Rotulagem/métodos , Análise de Sobrevida , Fatores de Tempo , Vaccinia virus/imunologia , Imagem Corporal Total
13.
J Virol ; 85(21): 10945-54, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21865396

RESUMO

Transmission of pathogenic avian influenza viruses (AIV) from wild birds to domestic poultry and humans is continuing in multiple countries around the world. In preparation for a potential AIV pandemic, multiple vaccine candidates are under development. In the case of H5N1 AIV, a clear shift in transmission from clade 1 to clade 2 viruses occurred in recent years. The virus-like particle (VLP) represents an economical approach to pandemic vaccine development. In the current study, we evaluated the humoral immune response in humans vaccinated with H5N1 A/Indonesia/05/2005 (clade 2.1) VLP vaccine manufactured in Sf9 insect cells. The VLPs were comprised of the influenza virus hemagglutinin (HA), neuraminidase (NA), and matrix 1 (M1) proteins. In an FDA-approved phase I/II human clinical study, two doses of H5N1 VLPs at 15, 45, or 90 µg HA/dose resulted in seroconversion and production of functional antibodies. Moreover, cross-reactivity against other clade 2 subtypes was demonstrated using virus neutralization assays. H5N1 whole-genome fragment phage display libraries (GFPDL) were used to elucidate the antibody epitope repertoire in postvaccination human sera. Diverse epitopes in HA1/HA2 and NA were recognized by postvaccination sera from the two high-dose groups, including large segments spanning the HA1 receptor binding domain. Importantly, the vaccine elicited sera that preferentially bound to an oligomeric form of recombinant HA1 compared with monomeric HA1. The oligomeric/monomeric HA1 binding ratios of the sera correlated with the virus neutralizing titers. Additionally, the two high-dose VLP vaccine groups generated NA-inhibiting antibodies that were associated with binding to a C-terminal epitope close to the sialic acid binding site. These findings represent the first report describing the quality of the antibody responses in humans following AIV VLP immunization and support further development of such vaccines against emerging influenza virus strains.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Reações Cruzadas , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Animais , Linhagem Celular , Mapeamento de Epitopos , Humanos , Neuraminidase/imunologia , Testes de Neutralização , Ligação Proteica , Spodoptera , Vacinas Virossomais/imunologia , Proteínas Virais/imunologia
14.
Nat Med ; 11(7): 740-7, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15951823

RESUMO

Vaccination with live vaccinia virus affords long-lasting protection against variola virus, the agent of smallpox. Its mode of protection in humans, however, has not been clearly defined. Here we report that vaccinia-specific B-cell responses are essential for protection of macaques from monkeypox virus, a variola virus ortholog. Antibody-mediated depletion of B cells, but not CD4+ or CD8+ T cells, abrogated vaccine-induced protection from a lethal intravenous challenge with monkeypox virus. In addition, passive transfer of human vaccinia-neutralizing antibodies protected nonimmunized macaques from severe disease. Thus, vaccines able to induce long-lasting protective antibody responses may constitute realistic alternatives to the currently available smallpox vaccine (Dryvax).


Assuntos
Linfócitos B/imunologia , Monkeypox virus/imunologia , Mpox/imunologia , Vacina Antivariólica/imunologia , Animais , Anticorpos/imunologia , Formação de Anticorpos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Macaca mulatta , Mpox/prevenção & controle
15.
medRxiv ; 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35233581

RESUMO

Viral infections can have profound and durable functional impacts on the immune system. There is an urgent need to characterize the long-term immune effects of SARS-CoV-2 infection given the persistence of symptoms in some individuals and the continued threat of novel variants. Here we use systems immunology, including longitudinal multimodal single cell analysis (surface proteins, transcriptome, and V(D)J sequences) from 33 previously healthy individuals after recovery from mild, non-hospitalized COVID-19 and 40 age- and sex-matched healthy controls with no history of COVID-19 to comparatively assess the post-infection immune status (mean: 151 days after diagnosis) and subsequent innate and adaptive responses to seasonal influenza vaccination. Identification of both sex-specific and -independent temporally stable changes, including signatures of T-cell activation and repression of innate defense/immune receptor genes (e.g., Toll-like receptors) in monocytes, suggest that mild COVID-19 can establish new post-recovery immunological set-points. COVID-19-recovered males had higher innate, influenza-specific plasmablast, and antibody responses after vaccination compared to healthy males and COVID-19-recovered females, partly attributable to elevated pre-vaccination frequencies of a GPR56 expressing CD8+ T-cell subset in male recoverees that are "poised" to produce higher levels of IFNγ upon inflammatory stimulation. Intriguingly, by day 1 post-vaccination in COVID-19-recovered subjects, the expression of the repressed genes in monocytes increased and moved towards the pre-vaccination baseline of healthy controls, suggesting that the acute inflammation induced by vaccination could partly reset the immune states established by mild COVID-19. Our study reveals sex-dimorphic immune imprints and in vivo functional impacts of mild COVID-19 in humans, suggesting that prior COVID-19, and possibly respiratory viral infections in general, could change future responses to vaccination and in turn, vaccines could help reset the immune system after COVID-19, both in an antigen-agnostic manner.

16.
J Virol ; 83(20): 10437-47, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19656894

RESUMO

To find an alternative endpoint for the efficacy of antismallpox treatments, bioluminescence was measured in live BALB/c mice following lethal challenge with a recombinant WR vaccinia virus expressing luciferase. Intravenous vaccinia immunoglobulin treatments were used to confer protection on a proportion of animals. Using known lethality outcomes in 200 animals and total fluxes recorded daily in live animals, we performed univariate receiver operating characteristic (ROC) curve analysis to assess whether lethality can be predicted based on bioluminescence. Total fluxes in the spleens on day 3 and in the livers on day 5 generated accurate predictive models; the area under the ROC curve (AUC) was 0.91. Multiple logistic regression analysis utilizing a linear combination of six measurements: total flux in the liver on days 2, 3, and 5; in the spleen on days 1 and 3; and in the nasal cavity on day 4 generated the most accurate predictions (AUC = 0.96). This model predicted lethality in 90% of animals with only 10% of nonsurviving animals incorrectly predicted to survive. Compared with bioluminescence, ROC analysis with 25% and 30% weight loss as thresholds accurately predicted survival on day 5, but lethality predictions were low until day 9. Collectively, our data support the use of bioimaging for lethality prediction following vaccinia virus challenge and for gaining insight into protective mechanisms conferred by vaccines and therapeutics.


Assuntos
Luciferases de Vaga-Lume/metabolismo , Medições Luminescentes/métodos , Vaccinia virus/patogenicidade , Vacínia/mortalidade , Animais , Feminino , Fígado/metabolismo , Fígado/virologia , Luciferases de Vaga-Lume/genética , Pulmão/metabolismo , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Valor Preditivo dos Testes , Recombinação Genética , Análise de Sobrevida , Vacínia/virologia , Vaccinia virus/genética , Vaccinia virus/metabolismo
17.
J Virol ; 83(9): 4624-30, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19211745

RESUMO

Avian influenza highlights the need for novel vaccination techniques that would allow for the rapid design and production of safe and effective vaccines. An ideal platform would be capable of inducing both protective antibodies and potent cellular immune responses. These potential advantages of DNA vaccines remain unrealized due to a lack of efficacy in large animal studies and in human trials. Questions remain regarding the potential utility of cellular immune responses against influenza virus in primates. In this study, by construct optimization and in vivo electroporation of synthetic DNA-encoded antigens, we observed the induction of cross-reactive cellular and humoral immune responses individually capable of providing protection from influenza virus infection in the rhesus macaque. These studies advance the DNA vaccine field and provide a novel, more tolerable vaccine with broad immunogenicity to avian influenza virus. This approach appears important for further investigation, including studies with humans.


Assuntos
Virus da Influenza A Subtipo H5N1/imunologia , Virus da Influenza A Subtipo H5N1/patogenicidade , Vacinas contra Influenza/imunologia , Macaca mulatta/imunologia , Macaca mulatta/virologia , Infecções por Orthomyxoviridae/prevenção & controle , Vacinas de DNA/imunologia , Animais , Eletroporação , Vetores Genéticos/genética , Vacinas contra Influenza/genética , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/transmissão , Plasmídeos/genética , Vacinas de DNA/genética , Replicação Viral
18.
PLoS Med ; 6(4): e1000049, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19381279

RESUMO

BACKGROUND: Transmission of highly pathogenic avian H5N1 viruses from poultry to humans have raised fears of an impending influenza pandemic. Concerted efforts are underway to prepare effective vaccines and therapies including polyclonal or monoclonal antibodies against H5N1. Current efforts are hampered by the paucity of information on protective immune responses against avian influenza. Characterizing the B cell responses in convalescent individuals could help in the design of future vaccines and therapeutics. METHODS AND FINDINGS: To address this need, we generated whole-genome-fragment phage display libraries (GFPDL) expressing fragments of 15-350 amino acids covering all the proteins of A/Vietnam/1203/2004 (H5N1). These GFPDL were used to analyze neutralizing human monoclonal antibodies and sera of five individuals who had recovered from H5N1 infection. This approach led to the mapping of two broadly neutralizing human monoclonal antibodies with conformation-dependent epitopes. In H5N1 convalescent sera, we have identified several potentially protective H5N1-specific human antibody epitopes in H5 HA[(-10)-223], neuraminidase catalytic site, and M2 ectodomain. In addition, for the first time to our knowledge in humans, we identified strong reactivity against PB1-F2, a putative virulence factor, following H5N1 infection. Importantly, novel epitopes were identified, which were recognized by H5N1-convalescent sera but did not react with sera from control individuals (H5N1 naïve, H1N1 or H3N2 seropositive). CONCLUSION: This is the first study, to our knowledge, describing the complete antibody repertoire following H5N1 infection. Collectively, these data will contribute to rational vaccine design and new H5N1-specific serodiagnostic surveillance tools.


Assuntos
Antígenos Virais/imunologia , Epitopos , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Aviária/imunologia , Proteínas Virais/imunologia , Animais , Anticorpos Monoclonais , Aves , Convalescença , Mapeamento de Epitopos , Epitopos/sangue , Biblioteca Genômica , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Aviária/virologia , Neuraminidase/imunologia , Vietnã , Proteínas da Matriz Viral/imunologia , Proteínas Virais/antagonistas & inibidores , Fatores de Virulência
19.
NPJ Vaccines ; 3: 40, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30302282

RESUMO

Immune responses to inactivated vaccines against avian influenza are poor due in part to lack of immune memory. Adjuvants significantly increased virus neutralizing titers. We performed comprehensive analyses of polyclonal antibody responses following FDA-approved adjuvanted H5N1-A/Indonesia vaccine, administered in presence or absence of AS03. Using Whole Genome Fragment Phage Display Libraries, we observed that AS03 induced antibody epitope diversity to viral hemagglutinin (HA) and neuraminidase compared with unadjuvanted vaccine. Furthermore, AS03 promoted significant antibody affinity maturation to properly folded H5-HA1 (but not to HA2) domain, which correlated with neutralization titers against both vaccine and heterologous H5N1 strains. However, no increase in heterosubtypic cross-neutralization of Group1-H1N1 seasonal strains was observed. AS03-H5N1 vaccine also induced higher neuraminidase inhibition antibody titers. This study provides insight into the differential impacts of AS03 adjuvant on H5N1 vaccine-induced antibody responses that may help optimize vaccine platforms for future vaccines with improved protection against seasonal and pandemic influenza strains.

20.
AIDS ; 21(4): 521-4, 2007 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-17301573

RESUMO

The only US licensed vaccine with established efficacy against smallpox, Dryvax, is contraindicated for HIV patients. Detectable smallpox-neutralizing antibodies are still present among US adults. This study compared vaccinia-neutralizing antibody titers between 20 HIV-infected and 20 uninfected veterans matched for age and military entry. Vaccinia-neutralizing antibodies were detected in 95% HIV-infected and 100% uninfected veterans; 40% HIV-infected and 70% uninfected adults had protective titers. Therefore, after robust vaccination, neutralizing antibodies are maintained for prolonged times despite CD4 cell depletion.


Assuntos
Anticorpos Antivirais/sangue , Infecções por HIV/imunologia , Vacina Antivariólica/imunologia , Adulto , Contagem de Linfócito CD4 , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Fatores de Tempo , Vaccinia virus/imunologia , Veteranos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA