Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 154(3): 541-55, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23871696

RESUMO

Acquired chromosomal instability and copy number alterations are hallmarks of cancer. Enzymes capable of promoting site-specific copy number changes have yet to be identified. Here, we demonstrate that H3K9/36me3 lysine demethylase KDM4A/JMJD2A overexpression leads to localized copy gain of 1q12, 1q21, and Xq13.1 without global chromosome instability. KDM4A-amplified tumors have increased copy gains for these same regions. 1q12h copy gain occurs within a single cell cycle, requires S phase, and is not stable but is regenerated each cell division. Sites with increased copy number are rereplicated and have increased KDM4A, MCM, and DNA polymerase occupancy. Suv39h1/KMT1A or HP1γ overexpression suppresses the copy gain, whereas H3K9/K36 methylation interference promotes gain. Our results demonstrate that overexpression of a chromatin modifier results in site-specific copy gains. This begins to establish how copy number changes could originate during tumorigenesis and demonstrates that transient overexpression of specific chromatin modulators could promote these events.


Assuntos
Replicação do DNA , Dosagem de Genes , Histona Desmetilases com o Domínio Jumonji/metabolismo , Neoplasias/genética , Cromatina/metabolismo , Cromossomos Humanos Par 1 , Instabilidade Genômica , Células HEK293 , Humanos , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/genética , Metilação , Neoplasias/metabolismo , Estrutura Terciária de Proteína , Fase S
2.
Nature ; 590(7846): 492-497, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33505027

RESUMO

Whole-genome doubling (WGD) is common in human cancers, occurring early in tumorigenesis and generating genetically unstable tetraploid cells that fuel tumour development1,2. Cells that undergo WGD (WGD+ cells) must adapt to accommodate their abnormal tetraploid state; however, the nature of these adaptations, and whether they confer vulnerabilities that can be exploited therapeutically, is unclear. Here, using sequencing data from roughly 10,000 primary human cancer samples and essentiality data from approximately 600 cancer cell lines, we show that WGD gives rise to common genetic traits that are accompanied by unique vulnerabilities. We reveal that WGD+ cells are more dependent than WGD- cells on signalling from the spindle-assembly checkpoint, DNA-replication factors and proteasome function. We also identify KIF18A, which encodes a mitotic kinesin protein, as being specifically required for the viability of WGD+ cells. Although KIF18A is largely dispensable for accurate chromosome segregation during mitosis in WGD- cells, its loss induces notable mitotic errors in WGD+ cells, ultimately impairing cell viability. Collectively, our results suggest new strategies for specifically targeting WGD+ cancer cells while sparing the normal, non-transformed WGD- cells that comprise human tissue.


Assuntos
Genoma Humano/genética , Mitose/efeitos dos fármacos , Neoplasias/genética , Neoplasias/patologia , Tetraploidia , Cariótipo Anormal/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Genes Letais/genética , Humanos , Cinesinas/deficiência , Cinesinas/genética , Cinesinas/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Masculino , Mitose/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Reprodutibilidade dos Testes , Fuso Acromático/efeitos dos fármacos
3.
Nucleic Acids Res ; 50(12): 7048-7066, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35736218

RESUMO

DICER1 syndrome is a cancer pre-disposition disorder caused by mutations that disrupt the function of DICER1 in miRNA processing. Studying the molecular, cellular and oncogenic effects of these mutations can reveal novel mechanisms that control cell homeostasis and tumor biology. Here, we conduct the first analysis of pathogenic DICER1 syndrome allele from the DICER1 3'UTR. We find that the DICER1 syndrome allele, rs1252940486, abolishes interaction with the PUMILIO RNA binding protein with the DICER1 3'UTR, resulting in the degradation of the DICER1 mRNA by AUF1. This single mutational event leads to diminished DICER1 mRNA and protein levels, and widespread reprogramming of miRNA networks. The in-depth characterization of the rs1252940486 DICER1 allele, reveals important post-transcriptional regulatory events that control DICER1 levels.


Assuntos
MicroRNAs , RNA Mensageiro , MicroRNAs/genética
4.
J Cell Sci ; 134(15)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34342353

RESUMO

Centromere structure and function are defined by the epigenetic modification of histones at centromeric and pericentromeric chromatin. The constitutive heterochromatin found at pericentromeric regions is highly enriched for H3K9me3 and H4K20me3. Although mis-expression of the methyltransferase enzymes that regulate these marks, Suv39 and Suv420, is common in disease, the consequences of such changes are not well understood. Our data show that increased centromere localization of Suv39 and Suv420 suppresses centromere transcription and compromises localization of the mitotic kinase Aurora B, decreasing microtubule dynamics and compromising chromosome alignment and segregation. We find that inhibition of Suv420 methyltransferase activity partially restores Aurora B localization to centromeres and that restoration of the Aurora B-containing chromosomal passenger complex to the centromere is sufficient to suppress mitotic errors that result when Suv420 and H4K20me3 is enriched at centromeres. Consistent with a role for Suv39 and Suv420 in negatively regulating Aurora B, high expression of these enzymes corresponds with increased sensitivity to Aurora kinase inhibition in human cancer cells, suggesting that increased H3K9 and H4K20 methylation may be an underappreciated source of chromosome mis-segregation in cancer. This article has an associated First Person interview with the first author of the paper.


Assuntos
Centrômero , Cinetocoros , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Centrômero/metabolismo , Segregação de Cromossomos , Humanos , Cinetocoros/metabolismo , Mitose , Fosforilação , Transcrição Gênica
5.
Genes Dev ; 29(17): 1875-89, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26314710

RESUMO

The retinoblastoma tumor suppressor (pRb) protein associates with chromatin and regulates gene expression. Numerous studies have identified Rb-dependent RNA signatures, but the proteomic effects of Rb loss are largely unexplored. We acutely ablated Rb in adult mice and conducted a quantitative analysis of RNA and proteomic changes in the colon and lungs, where Rb(KO) was sufficient or insufficient to induce ectopic proliferation, respectively. As expected, Rb(KO) caused similar increases in classic pRb/E2F-regulated transcripts in both tissues, but, unexpectedly, their protein products increased only in the colon, consistent with its increased proliferative index. Thus, these protein changes induced by Rb loss are coupled with proliferation but uncoupled from transcription. The proteomic changes in common between Rb(KO) tissues showed a striking decrease in proteins with mitochondrial functions. Accordingly, RB1 inactivation in human cells decreased both mitochondrial mass and oxidative phosphorylation (OXPHOS) function. RB(KO) cells showed decreased mitochondrial respiratory capacity and the accumulation of hypopolarized mitochondria. Additionally, RB/Rb loss altered mitochondrial pyruvate oxidation from (13)C-glucose through the TCA cycle in mouse tissues and cultured cells. Consequently, RB(KO) cells have an enhanced sensitivity to mitochondrial stress conditions. In summary, proteomic analyses provide a new perspective on Rb/RB1 mutation, highlighting the importance of pRb for mitochondrial function and suggesting vulnerabilities for treatment.


Assuntos
Mitocôndrias/metabolismo , Fosforilação Oxidativa , Proteína do Retinoblastoma/genética , Animais , Células Cultivadas , Colo/fisiopatologia , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Pulmão/fisiopatologia , Camundongos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteômica , Proteína do Retinoblastoma/metabolismo , Estresse Fisiológico/genética , Transcriptoma
7.
Mol Cell ; 53(6): 993-1004, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24613344

RESUMO

Chromosome instability (CIN), a common feature of solid tumors, promotes tumor evolution and increases drug resistance during therapy. We previously demonstrated that loss of the retinoblastoma protein (pRB) tumor suppressor causes changes in centromere structure and generates CIN. However, the mechanism and significance of this change was unclear. Here, we show that defects in cohesion are key to the pRB loss phenotype. pRB loss alters H4K20 methylation, a prerequisite for efficient establishment of cohesion at centromeres. Changes in cohesin regulation are evident during S phase, where they compromise replication and increase DNA damage. Ultimately, such changes compromise mitotic fidelity following pRB loss. Remarkably, increasing cohesion suppressed all of these phenotypes and dramatically reduced CIN in cancer cells lacking functional pRB. These data explain how loss of pRB undermines genomic integrity. Given the frequent functional inactivation of pRB in cancer, conditions that increase cohesion may provide a general strategy to suppress CIN.


Assuntos
Proteínas de Ciclo Celular/genética , Transformação Celular Neoplásica/genética , Instabilidade Cromossômica , Proteínas Cromossômicas não Histona/genética , Regulação Neoplásica da Expressão Gênica , Histonas/genética , Proteína do Retinoblastoma/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Centrômero , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Genoma Humano , Histonas/metabolismo , Humanos , Metilação , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína do Retinoblastoma/antagonistas & inibidores , Proteína do Retinoblastoma/metabolismo , Fase S/genética , Transdução de Sinais , Coesinas
8.
Biophys J ; 120(15): 3192-3210, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34197801

RESUMO

Proper formation and maintenance of the mitotic spindle is required for faithful cell division. Although much work has been done to understand the roles of the key molecular components of the mitotic spindle, identifying the consequences of force perturbations in the spindle remains a challenge. We develop a computational framework accounting for the minimal force requirements of mitotic progression. To reflect early spindle formation, we model microtubule dynamics and interactions with major force-generating motors, excluding chromosome interactions that dominate later in mitosis. We directly integrate our experimental data to define and validate the model. We then use simulations to analyze individual force components over time and their relationship to spindle dynamics, making it distinct from previously published models. We show through both model predictions and biological manipulation that rather than achieving and maintaining a constant bipolar spindle length, fluctuations in pole-to-pole distance occur that coincide with microtubule binding and force generation by cortical dynein. Our model further predicts that high dynein activity is required for spindle bipolarity when kinesin-14 (HSET) activity is also high. To the best of our knowledge, our results provide novel insight into the role of cortical dynein in the regulation of spindle bipolarity.


Assuntos
Dineínas , Fuso Acromático , Segregação de Cromossomos , Dineínas/metabolismo , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitose , Fuso Acromático/metabolismo
10.
Nature ; 481(7381): 329-34, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22237022

RESUMO

Retinoblastoma is an aggressive childhood cancer of the developing retina that is initiated by the biallelic loss of RB1. Tumours progress very quickly following RB1 inactivation but the underlying mechanism is not known. Here we show that the retinoblastoma genome is stable, but that multiple cancer pathways can be epigenetically deregulated. To identify the mutations that cooperate with RB1 loss, we performed whole-genome sequencing of retinoblastomas. The overall mutational rate was very low; RB1 was the only known cancer gene mutated. We then evaluated the role of RB1 in genome stability and considered non-genetic mechanisms of cancer pathway deregulation. For example, the proto-oncogene SYK is upregulated in retinoblastoma and is required for tumour cell survival. Targeting SYK with a small-molecule inhibitor induced retinoblastoma tumour cell death in vitro and in vivo. Thus, retinoblastomas may develop quickly as a result of the epigenetic deregulation of key cancer pathways as a direct or indirect result of RB1 loss.


Assuntos
Epigênese Genética/genética , Genômica , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/farmacologia , Retinoblastoma/tratamento farmacológico , Retinoblastoma/genética , Aneuploidia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Instabilidade Cromossômica/genética , Regulação Neoplásica da Expressão Gênica , Genes do Retinoblastoma/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Mutação/genética , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proto-Oncogene Mas , Retinoblastoma/patologia , Proteína do Retinoblastoma/deficiência , Proteína do Retinoblastoma/genética , Análise de Sequência de DNA , Quinase Syk , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Mol Cell ; 40(1): 22-33, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20932472

RESUMO

The proper coordination between DNA replication and mitosis during cell-cycle progression is crucial for genomic stability. During G2 and mitosis, Set8 catalyzes monomethylation of histone H4 on lysine 20 (H4K20me1), which promotes chromatin compaction. Set8 levels decline in S phase, but why and how this occurs is unclear. Here, we show that Set8 is targeted for proteolysis in S phase and in response to DNA damage by the E3 ubiquitin ligase, CRL4(Cdt2). Set8 ubiquitylation occurs on chromatin and is coupled to DNA replication via a specific degron in Set8 that binds PCNA. Inactivation of CRL4(Cdt2) leads to Set8 stabilization and aberrant H4K20me1 accumulation in replicating cells. Transient S phase expression of a Set8 mutant lacking the degron promotes premature H4K20me1 accumulation and chromatin compaction, and triggers a checkpoint-mediated G2 arrest. Thus, CRL4(Cdt2)-dependent destruction of Set8 in S phase preserves genome stability by preventing aberrant chromatin compaction during DNA synthesis.


Assuntos
Proliferação de Células , Montagem e Desmontagem da Cromatina , Proteínas Culina/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Fase S , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/efeitos da radiação , Proteínas Culina/genética , Dano ao DNA , Replicação do DNA , Regulação para Baixo , Instabilidade Genômica , Células HeLa , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Humanos , Metilação , Mutação , Proteínas Nucleares/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos da radiação , Fase S/efeitos dos fármacos , Fase S/efeitos da radiação , Fatores de Tempo , Ubiquitina-Proteína Ligases , Ubiquitinação , Xenopus
12.
Genes Dev ; 24(13): 1364-76, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20551165

RESUMO

Chromosome instability (CIN) is a common feature of tumor cells. By monitoring chromosome segregation, we show that depletion of the retinoblastoma protein (pRB) causes rates of missegregation comparable with those seen in CIN tumor cells. The retinoblastoma tumor suppressor is frequently inactivated in human cancers and is best known for its regulation of the G1/S-phase transition. Recent studies have shown that pRB inactivation also slows mitotic progression and promotes aneuploidy, but reasons for these phenotypes are not well understood. Here we describe the underlying mitotic defects of pRB-deficient cells that cause chromosome missegregation. Analysis of mitotic cells reveals that pRB depletion compromises centromeric localization of CAP-D3/condensin II and chromosome cohesion, leading to an increase in intercentromeric distance and deformation of centromeric structure. These defects promote merotelic attachment, resulting in failure of chromosome congression and an increased propensity for lagging chromosomes following mitotic delay. While complete loss of centromere function or chromosome cohesion would have catastrophic consequences, these more moderate defects allow pRB-deficient cells to proliferate but undermine the fidelity of mitosis, leading to whole-chromosome gains and losses. These observations explain an important consequence of RB1 inactivation, and suggest that subtle defects in centromere function are a frequent source of merotely and CIN in cancer.


Assuntos
Centrômero/metabolismo , Instabilidade Cromossômica/genética , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Centrômero/genética , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Mitose/genética , Complexos Multiproteicos/metabolismo , Neoplasias/fisiopatologia , Interferência de RNA , Proteína do Retinoblastoma/deficiência , Coesinas
13.
Haematologica ; 102(4): 719-727, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28034990

RESUMO

Aberrant expression of aurora kinase A is implicated in the genesis of various neoplasms, including acute myeloid leukemia. Alisertib, an aurora A kinase inhibitor, has demonstrated efficacy as monotherapy in trials of myeloid malignancy, and this efficacy appears enhanced in combination with conventional chemotherapies. In this phase I, dose-escalation study, newly diagnosed patients received conventional induction with cytarabine and idarubicin, after which alisertib was administered for 7 days. Dose escalation occurred via cohorts. Patients could then receive up to four cycles of consolidation, incorporating alisertib, and thereafter alisertib maintenance for up to 12 months. Twenty-two patients were enrolled. One dose limiting toxicity occurred at dose level 2 (prolonged thrombocytopenia), and the recommended phase 2 dose was established at 30mg twice daily. Common therapy-related toxicities included cytopenias and mucositis. Only three (14%) patients had persistent disease at mid-cycle, requiring "5+2" reinduction. The composite remission rate (complete remission and complete remission with incomplete neutrophil recovery) was 86% (nineteen of twenty-two patients; 90% CI 68-96%). Among those over age 65 and those with high-risk disease (secondary acute leukemia or cytogenetically high-risk disease), the composite remission rate was 88% and 100%, respectively. The median follow up was 13.5 months. Of those treated at the recommended phase 2 dose, the 12-month overall survival and progression-free survival were 62% (90% CI 33-81%) and 42% (90% CI 17-65%), respectively. Alisertib is well tolerated when combined with induction chemotherapy in acute myeloid leukemia, with a promising suggestion of efficacy. (clinicaltrials.gov Identifier:01779843).


Assuntos
Antineoplásicos/uso terapêutico , Azepinas/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Adulto , Idoso , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Aurora Quinase A/antagonistas & inibidores , Azepinas/administração & dosagem , Azepinas/farmacocinética , Citarabina/administração & dosagem , Feminino , Humanos , Idarubicina/administração & dosagem , Imuno-Histoquímica , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidade , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacocinética , Pirimidinas/administração & dosagem , Pirimidinas/farmacocinética , Indução de Remissão , Análise de Sobrevida , Resultado do Tratamento
14.
Curr Opin Cell Biol ; 20(1): 101-6, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18178073

RESUMO

Chromosome alignment and segregation during cell division rely on a highly ordered bipolar microtubule array called the mitotic spindle. The organization of microtubules into bipolar spindles with focused poles during mitosis requires numerous microtubule-associated proteins including both motor and nonmotor proteins. Nonmotor microtubule-associated proteins display extraordinary diversity in how they contribute to mitotic spindle organization. These mechanisms include regulation of microtubule nucleation and organization, direct and indirect influences on motor function, and control of cell cycle progression. Furthermore, many nonmotor spindle proteins display altered expression in cancer cells emphasizing their important roles in cell proliferation.


Assuntos
Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Motores Moleculares/metabolismo , Fuso Acromático/metabolismo , Animais , Ciclo Celular , Reagentes de Ligações Cruzadas/metabolismo , Humanos , Microtúbulos
15.
EMBO J ; 29(20): 3531-43, 2010 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-20852589

RESUMO

Accurate chromosome segregation during mitosis requires precise coordination of various processes, such as chromosome alignment, maturation of proper kinetochore-microtubule (kMT) attachments, correction of erroneous attachments, and silencing of the spindle assembly checkpoint (SAC). How these fundamental aspects of mitosis are coordinately and temporally regulated is poorly understood. In this study, we show that the temporal regulation of kMT attachments by CLASP1, astrin and Kif2b is central to mitotic progression and chromosome segregation fidelity. In early mitosis, a Kif2b-CLASP1 complex is recruited to kinetochores to promote chromosome movement, kMT turnover, correction of attachment errors, and maintenance of SAC signalling. However, during metaphase, this complex is replaced by an astrin-CLASP1 complex, which promotes kMT stability, chromosome alignment, and silencing of the SAC. We show that these two complexes are differentially recruited to kinetochores and are mutually exclusive. We also show that other kinetochore proteins, such as Kif18a, affect kMT attachments and chromosome movement through these proteins. Thus, CLASP1-astrin-Kif2b complex act as a central switch at kinetochores that defines mitotic progression and promotes fidelity by temporally regulating kMT attachments.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cinesinas/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitose/fisiologia , Fuso Acromático/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proteína B de Centrômero/genética , Proteína B de Centrômero/metabolismo , Cromossomos/metabolismo , Humanos , Cinesinas/genética , Proteínas Associadas aos Microtúbulos/genética , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
16.
Mol Biol Cell ; 34(6): ar63, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37017483

RESUMO

During cell division, the microtubule nucleating and organizing organelle, known as the centrosome, is a critical component of the mitotic spindle. In cells with two centrosomes, each centrosome functions as an anchor point for microtubules, leading to the formation of a bipolar spindle and progression through a bipolar cell division. When extra centrosomes are present, multipolar spindles form and the parent cell may divide into more than two daughter cells. Cells that are born from multipolar divisions are not viable, and hence clustering of extra centrosomes and progression to a bipolar division are critical determinants of viability in cells with extra centrosomes. We combine experimental approaches with computational modeling to define a role for cortical dynein in centrosome clustering. We show that centrosome clustering fails and multipolar spindles dominate when cortical dynein distribution or activity is experimentally perturbed. Our simulations further reveal that centrosome clustering is sensitive to the distribution of dynein on the cortex. Together, these results indicate that dynein's cortical localization alone is insufficient for effective centrosome clustering and, instead, dynamic relocalization of dynein from one side of the cell to the other throughout mitosis promotes timely clustering and bipolar cell division in cells with extra centrosomes.


Assuntos
Centrossomo , Dineínas , Dineínas/metabolismo , Centrossomo/metabolismo , Fuso Acromático/metabolismo , Mitose , Microtúbulos/metabolismo
17.
Life Sci Alliance ; 6(12)2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37704395

RESUMO

The retinoblastoma tumor suppressor protein (RB) interacts physically and functionally with a number of epigenetic modifying enzymes to control transcriptional regulation, respond to replication stress, promote DNA damage response and repair, and regulate genome stability. To better understand how disruption of RB function impacts epigenetic regulation of genome stability and determine whether such changes represent exploitable weaknesses of RB-deficient cancer cells, we performed an imaging-based screen to identify epigenetic inhibitors that promote DNA damage and compromise the viability of RB-deficient cells. We found that loss of RB alone leads to high levels of replication-dependent poly-ADP ribosylation (PARylation) and that preventing PARylation by trapping PARP enzymes on chromatin enables RB-deficient cells to progress to mitosis with unresolved replication stress. These defects contribute to high levels of DNA damage and compromised cell viability. We demonstrate this sensitivity is conserved across a panel of drugs that target both PARP1 and PARP2 and can be suppressed by reexpression of the RB protein. Together, these data indicate that drugs that target PARP1 and PARP2 may be clinically relevant for RB-deficient cancers.


Assuntos
Epigênese Genética , Inibidores de Poli(ADP-Ribose) Polimerases , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , DNA , Cromatina/genética , Dano ao DNA/genética
18.
bioRxiv ; 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36993348

RESUMO

The retinoblastoma tumor suppressor protein (RB) interacts physically and functionally with a number of epigenetic modifying enzymes to control transcriptional regulation, respond to replication stress, promote DNA damage response and repair pathways, and regulate genome stability. To better understand how disruption of RB function impacts epigenetic regulation of genome stability and determine whether such changes may represent exploitable weaknesses of RB-deficient cancer cells, we performed an imaging-based screen to identify epigenetic inhibitors that promote DNA damage and compromise viability of RB-deficient cells. We found that loss of RB alone leads to high levels of replication-dependent poly-ADP ribosylation (PARylation) and that preventing PARylation through inhibition of PARP enzymes enables RB-deficient cells to progress to mitosis with unresolved replication stress and under-replicated DNA. These defects contribute to high levels of DNA damage, decreased proliferation, and compromised cell viability. We demonstrate this sensitivity is conserved across a panel of inhibitors that target both PARP1 and PARP2 and can be suppressed by re-expression of the RB protein. Together, these data indicate that inhibitors of PARP1 and PARP2 may be clinically relevant for RB-deficient cancers.

19.
Mol Cancer Ther ; 21(10): 1583-1593, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-35905505

RESUMO

Numerical chromosome instability, or nCIN, defined as the high frequency of whole chromosome gains and losses, is prevalent in many solid tumors. nCIN has been shown to promote intratumor heterogeneity and corresponds with tumor aggressiveness, drug resistance, and tumor relapse. Although increased nCIN has been shown to promote the acquisition of genomic changes responsible for drug resistance, the potential to modulate nCIN in a therapeutic manner has not been well explored. Here we assess the role of nCIN in the acquisition of drug resistance in non-small cell lung cancer. We show that the generation of whole chromosome segregation errors in non-small cell lung cancer cells is sensitive to manipulation of microtubule dynamics and that enhancement of chromosome cohesion strongly suppresses nCIN and reduces intratumor heterogeneity. We demonstrate that suppression of nCIN has no impact on non-small cell lung cancer cell proliferation in vitro nor in tumor initiation in mouse xenograft models. However, suppression of nCIN alters the timing and molecular mechanisms that drive acquired drug resistance. These findings suggest mechanisms to suppress nCIN may serve as effective cotherapies to limit tumor evolution and sustain drug response.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Instabilidade Cromossômica , Resistência a Medicamentos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Camundongos , Recidiva Local de Neoplasia
20.
Curr Biol ; 17(3): 260-5, 2007 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-17276919

RESUMO

The spindle is a fusiform bipolar-microtubule array that is responsible for chromosome segregation during mitosis. Focused poles are an essential feature of spindles in vertebrate somatic cells, and pole focusing has been shown to occur through a centrosome-independent self-organization mechanism where microtubule motors cross-link and focus microtubule minus ends. Most of our understanding of this mechanism for pole focusing derives from studies performed in cell-free extracts devoid of centrosomes and kinetochores. Here, we examine how sustained force from kinetochores influences the mechanism of pole focusing in cultured cells. We show that the motor-driven self-organization activities associated with NuMA (i.e., cytoplasmic dynein) and HSET are not necessary for pole focusing if sustained force from kinetochores is inhibited in Nuf2- or Mis12-deficient cells. Instead, pole organization relies on TPX2 as it cross-links spindle microtubules to centrosome-associated mitotic asters. Thus, both motor-driven and static-cross-linking mechanisms contribute to spindle-pole organization, and kinetochore activity influences the mechanism of spindle-pole organization. The motor-driven self-organization of microtubule minus ends at spindle poles is needed to organize spindle poles in vertebrate somatic cells when kinetochores actively exert force on spindle microtubules.


Assuntos
Cinetocoros/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Antígenos Nucleares/metabolismo , Proteínas de Ciclo Celular/metabolismo , Sistema Livre de Células , Células Cultivadas , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas Nucleares/metabolismo , RNA Interferente Pequeno , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA