RESUMO
It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16-32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.
Assuntos
Biodiversidade , Clima , Ecossistema , Fenômenos Fisiológicos Vegetais , Mudança Climática/estatística & dados numéricos , Conservação dos Recursos Naturais , Desastres/estatística & dados numéricos , Secas , Pradaria , Atividades HumanasRESUMO
Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (ß-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between ß-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality.
Assuntos
Biodiversidade , Florestas , Simulação por Computador , Bases de Dados Factuais , Ecossistema , Europa (Continente) , Agricultura Florestal , Modelos Biológicos , ÁrvoresRESUMO
Global change, especially land-use intensification, affects human well-being by impacting the delivery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is a major component of global change effects on multifunctionality in real-world ecosystems, as in experimental ones, remains unclear. Therefore, we assessed biodiversity, functional composition and 14 ecosystem services on 150 agricultural grasslands differing in land-use intensity. We also introduce five multifunctionality measures in which ecosystem services were weighted according to realistic land-use objectives. We found that indirect land-use effects, i.e. those mediated by biodiversity loss and by changes to functional composition, were as strong as direct effects on average. Their strength varied with land-use objectives and regional context. Biodiversity loss explained indirect effects in a region of intermediate productivity and was most damaging when land-use objectives favoured supporting and cultural services. In contrast, functional composition shifts, towards fast-growing plant species, strongly increased provisioning services in more inherently unproductive grasslands.
Assuntos
Agricultura/métodos , Biodiversidade , Pradaria , Alemanha , Modelos Lineares , Solo/químicaRESUMO
Soil microbial biomass is a key determinant of carbon dynamics in the soil. Several studies have shown that soil microbial biomass significantly increases with plant species diversity, but it remains unclear whether plant species diversity can also stabilize soil microbial biomass in a changing environment. This question is particularly relevant as many global environmental change (GEC) factors, such as drought and nutrient enrichment, have been shown to reduce soil microbial biomass. Experiments with orthogonal manipulations of plant diversity and GEC factors can provide insights whether plant diversity can attenuate such detrimental effects on soil microbial biomass. Here, we present the analysis of 12 different studies with 14 unique orthogonal plant diversity × GEC manipulations in grasslands, where plant diversity and at least one GEC factor (elevated CO2 , nutrient enrichment, drought, earthworm presence, or warming) were manipulated. Our results show that higher plant diversity significantly enhances soil microbial biomass with the strongest effects in long-term field experiments. In contrast, GEC factors had inconsistent effects with only drought having a significant negative effect. Importantly, we report consistent non-significant effects for all 14 interactions between plant diversity and GEC factors, which indicates a limited potential of plant diversity to attenuate the effects of GEC factors on soil microbial biomass. We highlight that plant diversity is a major determinant of soil microbial biomass in experimental grasslands that can influence soil carbon dynamics irrespective of GEC.
Assuntos
Biodiversidade , Mudança Climática , Pradaria , Plantas , Microbiologia do Solo , Biomassa , Carbono/metabolismo , SecasRESUMO
Grasslands provide many ecosystem services including carbon storage, biodiversity preservation and livestock forage production. These ecosystem services will change in the future in response to multiple global environmental changes, including climate change and increased nitrogen inputs. We conducted an experimental study over 3 years in a mesotrophic grassland ecosystem in southern England. We aimed to expose plots to rainfall manipulation that simulated IPCC 4th Assessment projections for 2100 (+15% winter rainfall and -30% summer rainfall) or ambient climate, achieving +15% winter rainfall and -39% summer rainfall in rainfall-manipulated plots. Nitrogen (40 kg ha(-1) year(-1)) was also added to half of the experimental plots in factorial combination. Plant species composition and above ground biomass were not affected by rainfall in the first 2 years and the plant community did not respond to nitrogen enrichment throughout the experiment. In the third year, above-ground plant biomass declined in rainfall-manipulated plots, driven by a decline in the abundances of grass species characteristic of moist soils. Declining plant biomass was also associated with changes to arthropod communities, with lower abundances of plant-feeding Auchenorrhyncha and carnivorous Araneae indicating multi-trophic responses to rainfall manipulation. Plant and arthropod community composition and plant biomass responses to rainfall manipulation were not modified by nitrogen enrichment, which was not expected, but may have resulted from prior nitrogen saturation and/or phosphorus limitation. Overall, our study demonstrates that climate change may in future influence plant productivity and induce multi-trophic responses in grasslands.
Assuntos
Artrópodes , Biodiversidade , Mudança Climática , Pradaria , Nitrogênio/metabolismo , Poaceae/fisiologia , Chuva , Animais , Biomassa , Clima , Inglaterra , Fertilizantes , Herbivoria , Fósforo/metabolismo , Poaceae/crescimento & desenvolvimento , Estações do Ano , SoloRESUMO
The controls on aboveground community composition and diversity have been extensively studied, but our understanding of the drivers of belowground microbial communities is relatively lacking, despite their importance for ecosystem functioning. In this study, we fitted statistical models to explain landscape-scale variation in soil microbial community composition using data from 180 sites covering a broad range of grassland types, soil and climatic conditions in England. We found that variation in soil microbial communities was explained by abiotic factors like climate, pH and soil properties. Biotic factors, namely community-weighted means (CWM) of plant functional traits, also explained variation in soil microbial communities. In particular, more bacterial-dominated microbial communities were associated with exploitative plant traits versus fungal-dominated communities with resource-conservative traits, showing that plant functional traits and soil microbial communities are closely related at the landscape scale.
Assuntos
Ecossistema , Microbiologia do Solo , Clima , Inglaterra , Concentração de Íons de Hidrogênio , Modelos Estatísticos , Poaceae/crescimento & desenvolvimento , Solo/químicaRESUMO
Elevated nitrogen (N) inputs into terrestrial ecosystems are causing major changes to the composition and functioning of ecosystems. Understanding these changes is challenging because there are complex interactions between 'direct' effects of N on plant physiology and soil biogeochemistry, and 'indirect' effects caused by changes in plant species composition. By planting high N and low N plant community compositions into high and low N deposition model terrestrial ecosystems we experimentally decoupled direct and indirect effects and quantified their contribution to changes in carbon, N and water cycling. Our results show that direct effects on plant growth dominate ecosystem response to N deposition, although long-term carbon storage is reduced under high N plant-species composition. These findings suggest that direct effects of N deposition on ecosystem function could be relatively strong in comparison with the indirect effects of plant community change.
Assuntos
Ecossistema , Nitrogênio/metabolismo , Desenvolvimento Vegetal , Fertilizantes , Dinâmica Populacional , SoloRESUMO
Global change drivers are rapidly altering resource availability and biodiversity. While there is consensus that greater biodiversity increases the functioning of ecosystems, the extent to which biodiversity buffers ecosystem productivity in response to changes in resource availability remains unclear. We use data from 16 grassland experiments across North America and Europe that manipulated plant species richness and one of two essential resources-soil nutrients or water-to assess the direction and strength of the interaction between plant diversity and resource alteration on above-ground productivity and net biodiversity, complementarity, and selection effects. Despite strong increases in productivity with nutrient addition and decreases in productivity with drought, we found that resource alterations did not alter biodiversity-ecosystem functioning relationships. Our results suggest that these relationships are largely determined by increases in complementarity effects along plant species richness gradients. Although nutrient addition reduced complementarity effects at high diversity, this appears to be due to high biomass in monocultures under nutrient enrichment. Our results indicate that diversity and the complementarity of species are important regulators of grassland ecosystem productivity, regardless of changes in other drivers of ecosystem function.
Assuntos
Biodiversidade , Secas , Eutrofização , Pradaria , Fenômenos Fisiológicos Vegetais , Europa (Continente) , América do NorteRESUMO
The search for predictions of species diversity across environmental gradients has challenged ecologists for decades. The humped-back model (HBM) suggests that plant diversity peaks at intermediate productivity; at low productivity few species can tolerate the environmental stresses, and at high productivity a few highly competitive species dominate. Over time the HBM has become increasingly controversial, and recent studies claim to have refuted it. Here, by using data from coordinated surveys conducted throughout grasslands worldwide and comprising a wide range of site productivities, we provide evidence in support of the HBM pattern at both global and regional extents. The relationships described here provide a foundation for further research into the local, landscape, and historical factors that maintain biodiversity.
Assuntos
Biodiversidade , Pradaria , Desenvolvimento Vegetal , Biomassa , Estresse FisiológicoRESUMO
Temperate grassland ecosystems face a future of precipitation change, which can alter community composition and ecosystem functions through reduced soil moisture and waterlogging. There is evidence that functionally diverse plant communities contain a wider range of water use and resource capture strategies, resulting in greater resistance of ecosystem function to precipitation change. To investigate this interaction between composition and precipitation change we performed a field experiment for three years in successional grassland in southern England. This consisted of two treatments. The first, precipitation change, simulated end of century predictions, and consisted of a summer drought phase alongside winter rainfall addition. The second, functional group identity, divided the plant community into three groups based on their functional traits- broadly described as perennials, caespitose grasses and annuals- and removed these groups in a factorial design. Ecosystem functions related to C, N and water cycling were measured regularly. Effects of functional groupidentity were apparent, with the dominant trend being that process rates were higher under control conditions where a range of perennial species were present. E.g. litter decomposition rates were significantly higher in plots containing several perennial species, the group with the highest average leaf N content. Process rates were also very strongly affected by the precipitation change treatmentwhen perennial plant species were dominant, but not where the community contained a high abundance of annual species and caespitose grasses. This contrasting response could be attributable to differing rooting patterns (shallower structures under annual plants, and deeper roots under perennials) and faster nutrient uptake in annuals compared to perennials. Our results indicate that precipitation change will have a smaller effect on key process rates in grasslandscontaining a range of perennial and annual species, and that maintaining the presence of key functional groups should be a crucial consideration in future grassland management.
Assuntos
Ecossistema , Poaceae , Chuva , Solo , Dióxido de Carbono/análise , Inglaterra , Fotossíntese , Poaceae/fisiologia , Estações do Ano , Solo/análise , Água/análiseRESUMO
While it is well established that ecosystems display strong responses to elevated nitrogen deposition, the importance of the ratio between the dominant forms of deposited nitrogen (NH(x) and NO(y)) in determining ecosystem response is poorly understood. As large changes in the ratio of oxidised and reduced nitrogen inputs are occurring, this oversight requires attention. One reason for this knowledge gap is that plants experience a different NH(x):NO(y) ratio in soil to that seen in atmospheric deposits because atmospheric inputs are modified by soil transformations, mediated by soil pH. Consequently species of neutral and alkaline habitats are less likely to encounter high NH(4)(+) concentrations than species from acid soils. We suggest that the response of vascular plant species to changing ratios of NH(x):NO(y) deposits will be driven primarily by a combination of soil pH and nitrification rates. Testing this hypothesis requires a combination of experimental and survey work in a range of systems.
Assuntos
Ecossistema , Compostos de Nitrogênio/metabolismo , Nitrogênio/metabolismo , Plantas/metabolismo , Poluentes do Solo/metabolismo , Recuperação e Remediação Ambiental , Europa (Continente) , Nitrogênio/química , Compostos de Nitrogênio/química , Óxidos de Nitrogênio/química , Óxidos de Nitrogênio/metabolismo , Oxirredução , Plantas/química , Poluentes do Solo/químicaRESUMO
Grassland ecosystems cover vast areas of the Earth's surface and provide many ecosystem services including carbon (C) storage, biodiversity preservation and the production of livestock forage. Predicting the future delivery of these services is difficult, because widespread changes in atmospheric CO(2) concentration, climate and nitrogen (N) inputs are expected. We compiled published data from global change driver manipulation experiments and combined these with climate data to assess grassland biomass responses to CO(2) and N enrichment across a range of climates. CO(2) and N enrichment generally increased aboveground biomass (AGB) but effects of CO(2) enrichment were weaker than those of N. The response to N was also dependent on the amount of N added and rainfall, with a greater response in high precipitation regions. No relationship between response to CO(2) and climate was detected within our dataset, thus suggesting that other site characteristics, e.g. soils and plant community composition, are more important regulators of grassland responses to CO(2). A statistical model of AGB response to N was used in conjunction with projected N deposition data to estimate changes to future biomass stocks. This highlighted several potential hotspots (e.g. in some regions of China and India) of grassland AGB gain. Possible benefits for C sequestration and forage production in these regions may be offset by declines in plant biodiversity caused by these biomass gains, thus necessitating careful management if ecosystem service delivery is to be maximized. An approach such as ours, in which meta-analysis is combined with global scale model outputs to make large-scale predictions, may complement the results of dynamic global vegetation models, thus allowing us to form better predictions of biosphere responses to environmental change.