Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurochem Res ; 39(12): 2360-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25253393

RESUMO

We have evidence that F2-isoprostanes (F2-IsoPs) regulate the release of excitatory neurotransmitters in isolated bovine retina. Although 5-F3-IsoPs are generated in mammals, in vivo, their pharmacological actions on neurotransmitter release remain unknown. In this study, we investigated the effect of 5-epi-5-F3t-IsoP on K(+)-evoked [(3)H]D-aspartate release in isolated bovine retina using the superfusion method. Furthermore, we examined the role of arachidonic acid metabolites in the regulation of the neurotransmitter release by this novel IsoP. In the concentration range, 0.01 nM-0.1 µM, 5-epi-5-F3t-IsoP inhibited K(+)-evoked [(3)H]D-aspartate release in a concentration-dependent manner, achieving a maximum inhibition of 46.9 % at 0.1 µM (IC30 = 1 nM). The prostanoid receptor antagonists, AH 6809 (EP1-3/DP; 10 µM), SC 51322 (EP1; 10 µM) and SC 19220 (EP1; 1 µM) partially reversed 5-epi-5-F3t-IsoP-mediated inhibition of K(+)-induced [(3)H]D-aspartate release. Pretreatment of retinal tissues with the cyclooxygenase (COX) inhibitor, flurbiprofen (3 µM) unmasked a biphasic action of 5-epi-5-F3t-IsoP that was inhibitory at lower (0.1-10 pM) and stimulatory at higher concentrations (≥0.1 nM). The prostanoid pathway antagonists, BAY-u3405 (10 µM; TP/DP-receptors), SQ 29548 (10 µM; TP-receptor) and ozagrel (10 µM; Tx-synthase inhibitor) abolished the stimulatory action of the 5-epi-5-F3t-IsoP (0.1 µM) on neurotransmitter release. In conclusion, 5-epi-5-F3t-IsoP attenuates K(+)-induced [(3)H]D-aspartate release in a concentration-dependent manner by mechanisms that are partially dependent on activation of pre-junctional prostanoid EP1-receptors. Moreover, blockade of the COX-pathway unmasks a biphasic action for 5-epi-5-F3t-IsoP that is inhibitory at low concentrations and stimulatory at higher concentrations. Products of the thromboxane synthase pathway may partially account for the stimulatory action of this F3-IsoP on isolated bovine retina.


Assuntos
Ácido Aspártico/metabolismo , Isoprostanos/metabolismo , Retina/metabolismo , Animais , Bovinos
2.
Am J Physiol Endocrinol Metab ; 304(8): E863-73, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23443925

RESUMO

Fibroblast growth factor 23 (FGF23) is a hormone released primarily by osteocytes that regulates phosphate and vitamin D metabolism. Recent observational studies in humans suggest that circulating FGF23 is independently associated with cardiac hypertrophy and increased mortality, but it is unknown whether FGF23 can directly alter cardiac function. We found that FGF23 significantly increased cardiomyocyte cell size in vitro, the expression of gene markers of cardiac hypertrophy, and total protein content of cardiac muscle. In addition, FGFR1 and FGFR3 mRNA were the most abundantly expressed FGF receptors in cardiomyocytes, and the coreceptor α-klotho was expressed at very low levels. We tested an animal model of chronic kidney disease (Col4a3(-/-) mice) that has elevated serum FGF23. We found elevations in common hypertrophy gene markers in Col4a3(-/-) hearts compared with wild type but did not observe changes in wall thickness or cell size by week 10. However, the Col4a3(-/-) hearts did show reduced fractional shortening (-17%) and ejection fraction (-11%). Acute exposure of primary cardiomyocytes to FGF23 resulted in elevated intracellular Ca(2+) ([Ca(2+)](i); F/F(o) + 86%) which was blocked by verapamil pretreatment. FGF23 also increased ventricular muscle strip contractility (67%), which was inhibited by FGF receptor antagonism. We hypothesize that although FGF23 can acutely increase [Ca(2+)](i), chronically this may lead to decreases in contractile function or stimulate cardiac hypertrophy, as observed with other stress hormones. In conclusion, FGF23 is a novel bone/heart endocrine factor and may be an important mediator of cardiac Ca(2+) regulation and contractile function during chronic kidney disease.


Assuntos
Cálcio/metabolismo , Cardiomegalia/fisiopatologia , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Contração Miocárdica/fisiologia , Nefrite Hereditária/fisiopatologia , Animais , Autoantígenos/genética , Cardiomegalia/genética , Cardiomegalia/metabolismo , Colágeno Tipo IV/genética , Modelos Animais de Doenças , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/farmacologia , Glucuronidase/genética , Proteínas Klotho , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Nefrite Hereditária/genética , Nefrite Hereditária/metabolismo , Cultura Primária de Células , Receptores de Fatores de Crescimento de Fibroblastos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA