Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 169(1): 6-12, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28340351

RESUMO

Genome sequencing has revolutionized the diagnosis of genetic diseases. Close collaborations between basic scientists and clinical genomicists are now needed to link genetic variants with disease causation. To facilitate such collaborations, we recommend prioritizing clinically relevant genes for functional studies, developing reference variant-phenotype databases, adopting phenotype description standards, and promoting data sharing.


Assuntos
Pesquisa Biomédica , Genômica , Animais , Análise Mutacional de DNA , Bases de Dados Genéticas , Doença/genética , Projeto Genoma Humano , Humanos , Disseminação de Informação , Modelos Animais
2.
Am J Hum Genet ; 110(6): 903-912, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267899

RESUMO

10 years ago, a detailed analysis showed that only 33% of genome-wide association study (GWAS) results included the X chromosome. Multiple recommendations were made to combat such exclusion. Here, we re-surveyed the research landscape to determine whether these earlier recommendations had been translated. Unfortunately, among the genome-wide summary statistics reported in 2021 in the NHGRI-EBI GWAS Catalog, only 25% provided results for the X chromosome and 3% for the Y chromosome, suggesting that the exclusion phenomenon not only persists but has also expanded into an exclusionary problem. Normalizing by physical length of the chromosome, the average number of studies published through November 2022 with genome-wide-significant findings on the X chromosome is ∼1 study/Mb. By contrast, it ranges from ∼6 to ∼16 studies/Mb for chromosomes 4 and 19, respectively. Compared with the autosomal growth rate of ∼0.086 studies/Mb/year over the last decade, studies of the X chromosome grew at less than one-seventh that rate, only ∼0.012 studies/Mb/year. Among the studies that reported significant associations on the X chromosome, we noted extreme heterogeneities in data analysis and reporting of results, suggesting the need for clear guidelines. Unsurprisingly, among the 430 scores sampled from the PolyGenic Score Catalog, 0% contained weights for sex chromosomal SNPs. To overcome the dearth of sex chromosome analyses, we provide five sets of recommendations and future directions. Finally, until the sex chromosomes are included in a whole-genome study, instead of GWASs, we propose such studies would more properly be referred to as "AWASs," meaning "autosome-wide scans."


Assuntos
Estudo de Associação Genômica Ampla , Cromossomos Sexuais , Humanos , Estudo de Associação Genômica Ampla/métodos , Cromossomo Y , Genoma
3.
Am J Hum Genet ; 110(11): 1950-1958, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37883979

RESUMO

As large-scale genomic screening becomes increasingly prevalent, understanding the influence of actionable results on healthcare utilization is key to estimating the potential long-term clinical impact. The eMERGE network sequenced individuals for actionable genes in multiple genetic conditions and returned results to individuals, providers, and the electronic health record. Differences in recommended health services (laboratory, imaging, and procedural testing) delivered within 12 months of return were compared among individuals with pathogenic or likely pathogenic (P/LP) findings to matched individuals with negative findings before and after return of results. Of 16,218 adults, 477 unselected individuals were found to have a monogenic risk for arrhythmia (n = 95), breast cancer (n = 96), cardiomyopathy (n = 95), colorectal cancer (n = 105), or familial hypercholesterolemia (n = 86). Individuals with P/LP results more frequently received services after return (43.8%) compared to before return (25.6%) of results and compared to individuals with negative findings (24.9%; p < 0.0001). The annual cost of qualifying healthcare services increased from an average of $162 before return to $343 after return of results among the P/LP group (p < 0.0001); differences in the negative group were non-significant. The mean difference-in-differences was $149 (p < 0.0001), which describes the increased cost within the P/LP group corrected for cost changes in the negative group. When stratified by individual conditions, significant cost differences were observed for arrhythmia, breast cancer, and cardiomyopathy. In conclusion, less than half of individuals received billed health services after monogenic return, which modestly increased healthcare costs for payors in the year following return.


Assuntos
Neoplasias da Mama , Cardiomiopatias , Adulto , Humanos , Feminino , Estudos Prospectivos , Aceitação pelo Paciente de Cuidados de Saúde , Arritmias Cardíacas , Neoplasias da Mama/genética , Cardiomiopatias/genética
4.
Cell ; 147(1): 14-6, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21962499

RESUMO

Today, more than ever, basic science research provides significant opportunities to advance our understanding about the genetic basis of human disease. Close interactions among laboratory, computational, and clinical research communities will be crucial to ensure that genomic discoveries advance medical science and, ultimately, improve human health.


Assuntos
Doença/genética , Genômica , Farmacogenética , 5'-Nucleotidase/metabolismo , Calcinose , Artéria Femoral/patologia , Proteínas Ligadas por GPI/metabolismo , Estudo de Associação Genômica Ampla , Transplante de Células-Tronco Hematopoéticas , Humanos , Artéria Ilíaca/patologia , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/terapia , Masculino , Mutação , Doença Arterial Periférica/genética , Doença Arterial Periférica/terapia , Doenças Raras/diagnóstico , Doenças Raras/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
5.
Nature ; 586(7831): 683-692, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33116284

RESUMO

Starting with the launch of the Human Genome Project three decades ago, and continuing after its completion in 2003, genomics has progressively come to have a central and catalytic role in basic and translational research. In addition, studies increasingly demonstrate how genomic information can be effectively used in clinical care. In the future, the anticipated advances in technology development, biological insights, and clinical applications (among others) will lead to more widespread integration of genomics into almost all areas of biomedical research, the adoption of genomics into mainstream medical and public-health practices, and an increasing relevance of genomics for everyday life. On behalf of the research community, the National Human Genome Research Institute recently completed a multi-year process of strategic engagement to identify future research priorities and opportunities in human genomics, with an emphasis on health applications. Here we describe the highest-priority elements envisioned for the cutting-edge of human genomics going forward-that is, at 'The Forefront of Genomics'.


Assuntos
Pesquisa Biomédica/tendências , Genoma Humano/genética , Genômica/tendências , Saúde Pública/normas , Pesquisa Translacional Biomédica/tendências , Pesquisa Biomédica/economia , COVID-19/genética , Genômica/economia , Humanos , National Human Genome Research Institute (U.S.)/economia , Mudança Social , Pesquisa Translacional Biomédica/economia , Estados Unidos
6.
Nat Rev Genet ; 19(3): 175-185, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29151588

RESUMO

Recent studies have highlighted the imperatives of including diverse and under-represented individuals in human genomics research and the striking gaps in attaining that inclusion. With its multidecade experience in supporting research and policy efforts in human genomics, the National Human Genome Research Institute is committed to establishing foundational approaches to study the role of genomic variation in health and disease that include diverse populations. Large-scale efforts to understand biology and health have yielded key scientific findings, lessons and recommendations on how to increase diversity in genomic research studies and the genomic research workforce. Increased attention to diversity will increase the accuracy, utility and acceptability of using genomic information for clinical care.


Assuntos
Variação Genética , Genoma Humano , Genômica/métodos , Genética Humana/métodos , Medicina de Precisão/métodos , Humanos
7.
Circulation ; 145(12): 877-891, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-34930020

RESUMO

BACKGROUND: Sequencing Mendelian arrhythmia genes in individuals without an indication for arrhythmia genetic testing can identify carriers of pathogenic or likely pathogenic (P/LP) variants. However, the extent to which these variants are associated with clinically meaningful phenotypes before or after return of variant results is unclear. In addition, the majority of discovered variants are currently classified as variants of uncertain significance, limiting clinical actionability. METHODS: The eMERGE-III study (Electronic Medical Records and Genomics Phase III) is a multicenter prospective cohort that included 21 846 participants without previous indication for cardiac genetic testing. Participants were sequenced for 109 Mendelian disease genes, including 10 linked to arrhythmia syndromes. Variant carriers were assessed with electronic health record-derived phenotypes and follow-up clinical examination. Selected variants of uncertain significance (n=50) were characterized in vitro with automated electrophysiology experiments in HEK293 cells. RESULTS: As previously reported, 3.0% of participants had P/LP variants in the 109 genes. Herein, we report 120 participants (0.6%) with P/LP arrhythmia variants. Compared with noncarriers, arrhythmia P/LP carriers had a significantly higher burden of arrhythmia phenotypes in their electronic health records. Fifty-four participants had variant results returned. Nineteen of these 54 participants had inherited arrhythmia syndrome diagnoses (primarily long-QT syndrome), and 12 of these 19 diagnoses were made only after variant results were returned (0.05%). After in vitro functional evaluation of 50 variants of uncertain significance, we reclassified 11 variants: 3 to likely benign and 8 to P/LP. CONCLUSIONS: Genome sequencing in a large population without indication for arrhythmia genetic testing identified phenotype-positive carriers of variants in congenital arrhythmia syndrome disease genes. As the genomes of large numbers of people are sequenced, the disease risk from rare variants in arrhythmia genes can be assessed by integrating genomic screening, electronic health record phenotypes, and in vitro functional studies. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier; NCT03394859.


Assuntos
Arritmias Cardíacas , Testes Genéticos , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/genética , Predisposição Genética para Doença , Testes Genéticos/métodos , Genômica , Células HEK293 , Humanos , Fenótipo , Estudos Prospectivos
8.
Am J Hum Genet ; 106(5): 707-716, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32386537

RESUMO

Because polygenic risk scores (PRSs) for coronary heart disease (CHD) are derived from mainly European ancestry (EA) cohorts, their validity in African ancestry (AA) and Hispanic ethnicity (HE) individuals is unclear. We investigated associations of "restricted" and genome-wide PRSs with CHD in three major racial and ethnic groups in the U.S. The eMERGE cohort (mean age 48 ± 14 years, 58% female) included 45,645 EA, 7,597 AA, and 2,493 HE individuals. We assessed two restricted PRSs (PRSTikkanen and PRSTada; 28 and 50 variants, respectively) and two genome-wide PRSs (PRSmetaGRS and PRSLDPred; 1.7 M and 6.6 M variants, respectively) derived from EA cohorts. Over a median follow-up of 11.1 years, 2,652 incident CHD events occurred. Hazard and odds ratios for the association of PRSs with CHD were similar in EA and HE cohorts but lower in AA cohorts. Genome-wide PRSs were more strongly associated with CHD than restricted PRSs were. PRSmetaGRS, the best performing PRS, was associated with CHD in all three cohorts; hazard ratios (95% CI) per 1 SD increase were 1.53 (1.46-1.60), 1.53 (1.23-1.90), and 1.27 (1.13-1.43) for incident CHD in EA, HE, and AA individuals, respectively. The hazard ratios were comparable in the EA and HE cohorts (pinteraction = 0.77) but were significantly attenuated in AA individuals (pinteraction= 2.9 × 10-3). These results highlight the potential clinical utility of PRSs for CHD as well as the need to assemble diverse cohorts to generate ancestry- and ethnicity PRSs.


Assuntos
Negro ou Afro-Americano/genética , Doença das Coronárias/genética , Predisposição Genética para Doença , Hispânico ou Latino/genética , Herança Multifatorial/genética , População Branca/genética , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Razão de Chances
9.
J Genet Couns ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37655513

RESUMO

Despite the increasing numbers of genetic assistants (GAs) in the genomics workforce, their training needs and how to best prepare GAs for their role have not been well defined. We sought to identify the current educational status of GAs, opinions on their training needs, and attitudes about GA training programs (GATPs). Survey links were emailed to NSGC members, 17 state genetic counseling (GC) professional organizations, and genomic medicine researchers. Respondents (n = 411) included GCs (n = 231) and GAs (n = 136). Like other studies, we found that the GA position is filled by a range of education levels and career aspirations. Most respondents supported the creation of GATPs, with 63% endorsing that GATPs would be helpful and half endorsing a short-term (3 months or less) program. Most believed GATPs should focus on general knowledge, with almost all practical skills learned on-the-job. If more GATPs are created, our survey provides evidence that graduates would be hired. Indeed, of those whose work setting required a bachelor's degree, the number of respondents who favored keeping that requirement was similar to the number who favored hiring a GA without a degree if they attended a GATP. However, there were concerns about GATPs. Many (44%) believed creating GATPs could discourage candidates from becoming GAs. We observed that there are two types of GAs: entry-level and bachelor's-level, with the entry-level being those who do not have and are not working to obtain a bachelor's degree and the bachelor's-level being those who do/are. GATPs could focus on the education of entry-level GAs, while gaps in the knowledge base of bachelor's-level GAs could be addressed by augmenting bachelor's curriculum or providing additional training after hire. Further research on the training needs of GAs and hiring practices of institutions will be vital to understanding their training needs and designing and implementing effective GATPs.

10.
Am J Hum Genet ; 105(2): 233-236, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374201

RESUMO

The shortage of genomic research data in persons of non-European ancestry is impeding our ability to use genomics in the clinical care of non-European individuals. Improved efforts to utilize data on non-European populations will increase the quality of genomic research and the inferences drawn from it for people of all backgrounds.


Assuntos
População Negra/genética , Marcadores Genéticos , Variação Genética , Genômica/métodos , População Branca/genética , Humanos
11.
Am J Hum Genet ; 104(1): 13-20, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30609404

RESUMO

Genomic sequencing is rapidly transitioning into clinical practice, and implementation into healthcare systems has been supported by substantial government investment, totaling over US$4 billion, in at least 14 countries. These national genomic-medicine initiatives are driving transformative change under real-life conditions while simultaneously addressing barriers to implementation and gathering evidence for wider adoption. We review the diversity of approaches and current progress made by national genomic-medicine initiatives in the UK, France, Australia, and US and provide a roadmap for sharing strategies, standards, and data internationally to accelerate implementation.


Assuntos
Atenção à Saúde/métodos , Atenção à Saúde/organização & administração , Genética Médica/métodos , Genética Médica/organização & administração , Genômica/tendências , Cooperação Internacional , Austrália , Atenção à Saúde/economia , Atenção à Saúde/tendências , Medicina Baseada em Evidências , França , Genética Médica/economia , Genética Médica/tendências , Genômica/economia , Humanos , Disseminação de Informação , Setor Privado , Reino Unido , Estados Unidos
12.
Genet Med ; 24(3): 736-743, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34906458

RESUMO

PURPOSE: The American College of Medical Genetics and Genomics (ACMG) recommends the return of pathogenic and likely pathogenic (P/LP) secondary findings from exome and genome sequencing. The latest version (ACMG secondary finding [SF] v3.0) includes 14 additional genes. We interrogated the ClinSeq cohort for variants in these genes to determine the additional yield in unselected individuals. METHODS: Exome data from 1473 individuals (60% White, 34% African American or Black, 6% other) were analyzed. We restricted our analyses to coding variants; +1,+2,-1, and -2 splice site variants; and the pathogenic GAA variant, NM_000152.5:c.-32-13T>G. Variants were assessed with slightly modified ACMG/Association of Molecular Pathology guidelines. RESULTS: A total of 25 P/LP variants were identified. In total, 7 individuals had P/LP variants in genes recommended for return of heterozygous variants, namely HNF1A (1), PALB2 (3), TMEM127 (1), and TTN (2). In total, 4 individuals had a homozygous variant in a gene recommended for biallelic variant return, namely HFE, NM_000410.3(HFE):c.845G>A p.Cys282Tyr. A total of 17 P/LP variants were identified in the heterozygous state in genes recommended only for biallelic variant reporting and were not returned. The frequency of returnable P/LP variants did not significantly differ by race. CONCLUSION: Using the ACMG SF v3.0, the returnable P/LP variant frequency increased in the ClinSeq cohort by 22%, from 3.4% (n = 50, ACMG SF v2.0) to 4.1% (n = 61, ACMG SF v3.0).


Assuntos
Variação Genética , Genômica , Exoma/genética , Variação Genética/genética , Humanos , Mutação , Sequenciamento do Exoma
13.
Genet Med ; 24(10): 2123-2133, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35943490

RESUMO

PURPOSE: We estimated the penetrance of pathogenic/likely pathogenic (P/LP) variants in arteriopathy-related genes and assessed near-term outcomes following return of results. METHODS: Participants (N = 24,520) in phase III of the Electronic Medical Records and Genomics network underwent targeted sequencing of 68 actionable genes, including 9 genes associated with arterial aneurysmal diseases. Penetrance was estimated on the basis of the presence of relevant clinical traits. Outcomes occurring within 1 year of return of results included new diagnoses, referral to a specialist, new tests ordered, surveillance initiated, and new medications started. RESULTS: P/LP variants were present in 34 participants. The average penetrance across genes was 59%, ranging from 86% for FBN1 variants to 25% for SMAD3. Of 16 participants in whom results were returned, 1-year outcomes occurred in 63%. A new diagnosis was made in 44% of the participants, 56% were referred to a specialist, a new test was ordered in 44%, surveillance was initiated in 31%, and a new medication was started in 31%. CONCLUSION: Penetrance of P/LP variants in arteriopathy-related genes, identified in a large, targeted sequencing study, was variable and overall lower than that reported in clinical cohorts. Meaningful outcomes within the first year were noted in 63% of participants who received results.


Assuntos
Genômica , Humanos , Penetrância , Fenótipo
15.
Am J Hum Genet ; 103(3): 358-366, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30122538

RESUMO

While consensus regarding the return of secondary genomic findings in the clinical setting has been reached, debate about such findings in the research setting remains. We developed a hybrid, research-clinical translational genomics process for research exome data coupled with a CLIA-validated secondary findings analysis. Eleven intramural investigators from ten institutes at the National Institutes of Health piloted this process. Nearly 1,200 individuals were sequenced and 14 secondary findings were identified in 18 participants. Positive secondary findings were returned by a genetic counselor following a standardized protocol, including referrals for specialty follow-up care for the secondary finding local to the participants. Interviews were undertaken with 13 participants 4 months after receipt of a positive report. These participants reported minimal psychologic distress within a process to assimilate their results. Of the 13, 9 reported accessing the recommended health care services. A sample of 107 participants who received a negative findings report were surveyed 4 months after receiving it. They demonstrated good understanding of the negative secondary findings result and most expressed reassurance (64%) from that report. However, a notable minority (up to 17%) expressed confusion regarding the distinction of primary from secondary findings. This pilot shows it is feasible to couple CLIA-compliant secondary findings to research sequencing with minimal harms. Participants managed the surprise of a secondary finding with most following recommended follow up, yet some with negative findings conflated secondary and primary findings. Additional work is needed to understand barriers to follow-up care and help participants distinguish secondary from primary findings.


Assuntos
Exoma/genética , Feminino , Aconselhamento Genético/métodos , Genômica/métodos , Humanos , Achados Incidentais , Masculino , Pessoa de Meia-Idade , Projetos Piloto
17.
Lancet ; 394(10197): 533-540, 2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31395441

RESUMO

One of the primary goals of genomic medicine is to improve diagnosis through identification of genomic conditions, which could improve clinical management, prevent complications, and promote health. We explore how genomic medicine is being used to obtain molecular diagnoses for patients with previously undiagnosed diseases in prenatal, paediatric, and adult clinical settings. We focus on the role of clinical genomic sequencing (exome and genome) in aiding patients with conditions that are undiagnosed even after extensive clinical evaluation and testing. In particular, we explore the impact of combining genomic and phenotypic data and integrating multiple data types to improve diagnoses for patients with undiagnosed diseases, and we discuss how these genomic sequencing diagnoses could change clinical management.


Assuntos
Doenças Raras/diagnóstico , Análise de Sequência de DNA/métodos , Adulto , Criança , Diagnóstico Precoce , Genômica , Humanos , Fenótipo , Diagnóstico Pré-Natal/métodos , Doenças Raras/genética , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
18.
Lancet ; 394(10197): 511-520, 2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31395439

RESUMO

Advances in technologies for assessing genomic variation and an increasing understanding of the effects of genomic variants on health and disease are driving the transition of genomics from the research laboratory into clinical care. Genomic medicine, or the use of an individual's genomic information as part of their clinical care, is increasingly gaining acceptance in routine practice, including in assessing disease risk in individuals and their families, diagnosing rare and undiagnosed diseases, and improving drug safety and efficacy. We describe the major types and measurement tools of genomic variation that are currently of clinical importance, review approaches to interpreting genomic sequence variants, identify publicly available tools and resources for genomic test interpretation, and discuss several key barriers in using genomic information in routine clinical practice.


Assuntos
Genômica/métodos , Medicina de Precisão/métodos , Predisposição Genética para Doença , Humanos , Variantes Farmacogenômicos
20.
Am J Hum Genet ; 98(6): 1051-1066, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27181682

RESUMO

Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine.


Assuntos
Pesquisa Biomédica , Prática Clínica Baseada em Evidências , Exoma/genética , Genoma Humano , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único/genética , Adulto , Doenças Cardiovasculares/genética , Criança , Ensaios Clínicos como Assunto , Humanos , National Human Genome Research Institute (U.S.) , Grupos Populacionais , Software , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA