Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Eur J Immunol ; 52(8): 1273-1284, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35503749

RESUMO

Endemic Burkitt lymphoma (eBL) is characterized by an oncogenic IGH/c-MYC translocation and Epstein-Barr virus (EBV) positivity, and is epidemiologically linked to Plasmodium falciparum malaria. Both EBV and malaria are thought to contribute to eBL by inducing the expression of activation-induced cytidine deaminase (AID), an enzyme involved in the IGH/c-MYC translocation. AID/apolipoprotein B mRNA editing catalytic polypeptide-like (AID/APOBEC) family enzymes have recently emerged as potent mutagenic sources in a variety of cancers, but apart from AID, their involvement in eBL and their regulation by EBV and P. falciparum is unknown. Here, we show that upon inoculation with EBV, human B cells strongly upregulate the expression of enzymatically active APOBEC3B and APOBEC3G. In addition, we found significantly increased levels of APOBEC3A in B cells of malaria patients, which correlated with parasite load. Interestingly, despite the fact that APOBEC3A, APOBEC3B, and APOBEC3G caused c-MYC mutations when overexpressed in HEK293T cells, a mutational enrichment in eBL tumors was only detected in AID motifs. This suggests that even though the EBV- and P. falciparum-directed immune response triggers the expression and activity of several AID/APOBEC members, only the upregulation of AID has oncogenic consequences, while the induction of the APOBEC3 subfamily may primarily have immunoprotective functions.


Assuntos
Desaminases APOBEC , Linfoma de Burkitt , Citidina Desaminase , Infecções por Vírus Epstein-Barr , Malária Falciparum , Desaminases APOBEC/genética , Desaminase APOBEC-3G , Linfoma de Burkitt/enzimologia , Linfoma de Burkitt/genética , Citidina Desaminase/genética , Infecções por Vírus Epstein-Barr/enzimologia , Infecções por Vírus Epstein-Barr/genética , Células HEK293 , Herpesvirus Humano 4 , Humanos , Malária Falciparum/enzimologia , Malária Falciparum/genética , Antígenos de Histocompatibilidade Menor , Mutagênicos
2.
J Immunol ; 204(7): 1798-1809, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32066596

RESUMO

Plasmodium spp., the causative agent of malaria, have a complex life cycle. The exponential growth of the parasites during the blood stage is responsible for almost all malaria-associated morbidity and mortality. Therefore, tight immune control of the intraerythrocytic replication of the parasite is essential to prevent clinical malaria. Despite evidence that the particular lymphocyte subset of γδ T cells contributes to protective immunity during the blood stage in naive hosts, their precise inhibitory mechanisms remain unclear. Using human PBMCs, we confirmed in this study that γδ T cells specifically and massively expanded upon activation with Plasmodium falciparum culture supernatant. We also demonstrate that these activated cells gain cytolytic potential by upregulating cytotoxic effector proteins and IFN-γ. The killer cells bound to infected RBCs and killed intracellular P. falciparum via the transfer of the granzymes, which was mediated by granulysin in a stage-specific manner. Several vital plasmodial proteins were efficiently destroyed by granzyme B, suggesting proteolytic degradation of these proteins as essential in the lymphocyte-mediated death pathway. Overall, these data establish a granzyme- and granulysin-mediated innate immune mechanism exerted by γδ T cells to kill late-stage blood-residing P. falciparum.


Assuntos
Antígenos de Diferenciação de Linfócitos T/imunologia , Granzimas/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Antígenos de Protozoários/imunologia , Células Cultivadas , Eritrócitos/imunologia , Humanos , Imunidade Inata/imunologia , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , Leucócitos Mononucleares/imunologia , Estágios do Ciclo de Vida/imunologia , Ativação Linfocitária/imunologia , Subpopulações de Linfócitos T/imunologia , Regulação para Cima/imunologia
3.
Nanomedicine ; 14(2): 601-607, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29155361

RESUMO

Bone infections are difficult to treat and can lead to severe tissue destruction. Acute bone infections are usually caused by Staphylococcus aureus. Osteoclasts, which belong to the monocyte/macrophage lineage, are the key cells in bone infections. They are not well equipped for killing bacteria and may serve as a reservoir for bacterial pathogens. Silver has been known for centuries for its bactericidal activity. Here, we investigated the bactericidal effects of nano-silver particles in bacteria infected human osteoclasts. We found that nano-silver in per se non-toxic concentration enhanced the bactericidal activity in osteoclasts against intracellular Methicillin-resistant, virulent Staphylococcus aureus. The reduced bacterial survival in nano-silver pretreated cells correlated with increased reactive oxygen responses towards the invading pathogens. Overall, these results indicate that nano-silver compounds should be considered as an effective treatment and prevention option for bacterial bone and orthopedic implant infections.


Assuntos
Antibacterianos/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Osteoclastos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Prata/química , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Células Cultivadas , Humanos , Nanopartículas Metálicas/química , Osteoclastos/patologia , Fagocitose , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/isolamento & purificação
4.
Blood ; 136(12): 1375-1376, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32941634
5.
Cell Microbiol ; 17(11): 1618-39, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25996544

RESUMO

Apicomplexans are a diverse group of obligate parasites occupying different intracellular niches that require modification to meet the needs of the parasite. To efficiently manipulate their environment, apicomplexans translocate numerous parasite proteins into the host cell. Whereas some parasites remain contained within a parasitophorous vacuole membrane (PVM) throughout their developmental cycle, others do not, a difference that affects the machinery needed for protein export. A signal-mediated pathway for protein export into the host cell has been characterized in Plasmodium parasites, which maintain the PVM. Here, we functionally demonstrate an analogous host-targeting pathway involving organellar staging prior to secretion in the related bovine parasite, Babesia bovis, a parasite that destroys the PVM shortly after invasion. Taking into account recent identification of a similar signal-mediated pathway in the coccidian parasite Toxoplasma gondii, we suggest a model in which this conserved pathway has evolved in multiple steps from signal-mediated trafficking to specific secretory organelles for controlled secretion to a complex protein translocation process across the PVM.


Assuntos
Babesia bovis/fisiologia , Interações Hospedeiro-Patógeno , Proteínas de Protozoários/metabolismo , Vacúolos/parasitologia , Fatores de Virulência/metabolismo , Plasmodium/fisiologia , Transporte Proteico , Análise de Sequência de DNA , Toxoplasma/fisiologia
6.
Cell Microbiol ; 16(3): 344-54, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24406102

RESUMO

Protozoan parasites and other microorganisms use various pathways to communicate within their own populations and to manipulate their outside environments, with the ultimate goal of balancing the rate of growth and transmission. In higher eukaryotes, including humans, circulating extracellular vesicles are increasingly recognized as key mediators of physiological and pathological processes. Recent evidence suggests that protozoan parasites, including those responsible for major human diseases such as malaria and Chagas disease, use similar machinery. Indeed, intracellular and extracellular protozoan parasites secrete extracellular vesicles to promote growth and induce transmission, to evade the host immune system, and to manipulate the microenvironment. In this review we will discuss the general pathways of extracellular vesicle biogenesis and their functions in protozoan infections.


Assuntos
Exossomos/parasitologia , Plasmodium/fisiologia , Vesículas Transportadoras/parasitologia , Animais , Adesão Celular , Doença de Chagas/imunologia , Doença de Chagas/patologia , Espaço Extracelular , Humanos , Leishmania/fisiologia , Leishmaniose/imunologia , Leishmaniose/patologia , Malária/imunologia , Malária/patologia , Malária/transmissão , Plasmodium/crescimento & desenvolvimento , Trichomonas/patogenicidade , Tricomoníase/patologia , Trypanosoma cruzi/fisiologia
7.
Biol Chem ; 394(10): 1253-62, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23770532

RESUMO

Extracellular vesicles (EVs), including microvesicles and exosomes, are nano- to micron-sized vesicles, which may deliver bioactive cargos that include lipids, growth factors and their receptors, proteases, signaling molecules, as well as mRNA and non-coding RNA, released from the cell of origin, to target cells. EVs are released by all cell types and likely induced by mechanisms involved in oncogenic transformation, environmental stimulation, cellular activation, oxidative stress, or death. Ongoing studies investigate the molecular mechanisms and mediators of EVs-based intercellular communication at physiological and oncogenic conditions with the hope of using this information as a possible source for explaining physiological processes in addition to using them as therapeutic targets and disease biomarkers in a variety of diseases. A major limitation in this evolving discipline is the hardship and the lack of standardization for already challenging techniques to isolate EVs. Technical advances have been accomplished in the field of isolation with improving knowledge and emerging novel technologies, including ultracentrifugation, microfluidics, magnetic beads and filtration-based isolation methods. In this review, we will discuss the latest advances in methods of isolation methods and production of clinical grade EVs as well as their advantages and disadvantages, and the justification for their support and the challenges that they encounter.


Assuntos
Biologia/métodos , Exossomos/química , Biologia Celular/tendências , Centrifugação com Gradiente de Concentração , Microfluídica , Microscopia Eletrônica de Transmissão
8.
Eur J Immunol ; 41(2): 503-13, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21268019

RESUMO

The molecular mechanisms whereby CD28 alone or associated with TCR can regulate FOXP3 expression are not understood, although the importance of CD28 as a pivotal regulator of CD4(+) CD25(+) FOXP3(+) T cells is well recognized. We previously demonstrated that unique CD28-induced, NF-κB-dependent signals were sufficient to activate FOXP3 transcription in human CD4(+) CD25(-) T cells; however, the exact mechanisms are currently unknown. In this study, we have identified novel κB-binding sites on FOXP3 gene and demonstrated that CD28 signals mediated FOXP3 trans activation by nuclear translocation of RelA/NF-κB and not of c-Rel. The occupancy of FOXP3 κB-binding sites by RelA dimers that correlated with histone acetylation and recruitment of Pol II were required both to initiate FOXP3 transcription and to control the promoter occupancy by NFAT. Interestingly, knockdown of RelA in CD4(+) CD25(-) T cells stimulated through TCR and CD28 significantly affected FOXP3 expression, confirming that also the transcriptional activation of FOXP3 gene by TCR in the presence of CD28-costimulatory signals is RelA-dependent. In conclusion, these data suggest a new mechanism by which FOXP3 is activated and supports the critical role of CD28 in the regulation of peripheral tolerance.


Assuntos
Antígenos CD28/imunologia , Fatores de Transcrição Forkhead/metabolismo , Ativação Linfocitária/fisiologia , NF-kappa B/metabolismo , Linfócitos T Reguladores/metabolismo , Fator de Transcrição RelA/metabolismo , Acetilação , Animais , Anticorpos/imunologia , Anticorpos/farmacologia , Antígeno B7-1/imunologia , Antígeno B7-1/metabolismo , Complexo CD3/imunologia , Ciclosporina/farmacologia , Fatores de Transcrição Forkhead/genética , Células HEK293 , Histonas/metabolismo , Humanos , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Células L/imunologia , Células L/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Camundongos , NF-kappa B/antagonistas & inibidores , Fatores de Transcrição NFATC/antagonistas & inibidores , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , RNA Interferente Pequeno/genética , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Acetato de Tetradecanoilforbol/farmacologia , Fator de Transcrição RelA/genética , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/fisiologia , Transfecção
9.
J Immunol ; 184(11): 6161-9, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20427770

RESUMO

The process of Th cell differentiation toward polarized effector T cells tailors specific immunity against invading pathogens while allowing tolerance against commensal microorganisms, harmless allergens, or autologous Ags. Identification of the mechanisms underlying this polarization process is therefore central to understand how the immune system confers immunity and tolerance. The present study demonstrates that retinoic acid receptor-related orphan receptor C2 (RORC2), a key transcription factor in Th17 cell development, inhibits FOXP3 expression in human T cells. Although overexpression of RORC2 in naive T cells reduces levels of FOXP3, small interfering RNA-mediated knockdown of RORC2 enhances its expression. RORC2 mediates this inhibition at least partially by binding to two out of four ROR-responsive elements on the FOXP3 promoter. Knockdown of RORC2 promotes high FOXP3 levels and decreased expression of proinflammatory cytokines beta form of pro-IL-1, IL-6, IL-17A, IFN-gamma, and TNF-alpha in differentiating naive T cells, suggesting that the role of RORC2 in Th17 cell development involves not only induction of Th17-characteristic genes, but also suppression of regulatory T cell-specific programs. Together, this study identifies RORC2 as a polarizing factor in transcriptional cross-regulation and provides novel viewpoints on the control of immune tolerance versus effector immune responses.


Assuntos
Diferenciação Celular/imunologia , Fatores de Transcrição Forkhead/genética , Tolerância Imunológica/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T/imunologia , Sequência de Bases , Western Blotting , Diferenciação Celular/genética , Separação Celular , Sequência Conservada , Citocinas/biossíntese , Citocinas/imunologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Fatores de Transcrição Forkhead/imunologia , Humanos , Tolerância Imunológica/imunologia , Imunoprecipitação , Dados de Sequência Molecular , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Transfecção
10.
Eukaryot Cell ; 10(11): 1492-503, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21965515

RESUMO

During Plasmodium falciparum infection, host red blood cell (RBC) remodeling is required for the parasite's survival. Such modifications are mediated by the export of parasite proteins into the RBC that alter the architecture of the RBC membrane and enable cytoadherence. It is probable that some exported proteins also play a protective role against the host defense response. This may be of particular importance for the gametocyte stage of the life cycle that is responsible for malaria transmission, since the gametocyte remains in contact with blood as it proceeds through five morphological stages (I to V) during its 12-day maturation. Using microarray analysis, we identified several genes with encoded secretory or export sequences that were differentially expressed during early gametocytogenesis. One of these, PfGECO, encodes a predicted type IV heat shock protein 40 (HSP40) that we show is expressed in gametocyte stages I to IV and is exported to the RBC cytoplasm. HSPs are traditionally induced under stressful conditions to maintain homeostasis, but PfGECO expression was not increased upon heat shock, suggesting an alternate function. Targeted disruption of PfGECO indicated that the gene is not essential for gametocytogenesis in vitro, and quantitative reverse transcriptase PCR (RT-PCR) showed that there was no compensatory expression of the other type IV HSP40 genes. Although P. falciparum HSP40 members are implicated in the trafficking of proteins to the RBC surface, removal of PfGECO did not affect the targeting of other exported gametocyte proteins. This work has expanded the repertoire of known gametocyte-exported proteins to include a type IV HSP40, PfGECO.


Assuntos
Eritrócitos/parasitologia , Proteínas de Choque Térmico HSP40/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Genes de Protozoários , Proteínas de Choque Térmico HSP40/genética , Resposta ao Choque Térmico , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Plasmodium falciparum/genética , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Front Cell Dev Biol ; 10: 812244, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35652104

RESUMO

Malaria affects the poorer regions of the world and is of tremendous health and economic burden for developing countries. Extracellular vesicles (EVs) are small vesicles released by almost any cells in the human body, including malaria infected red blood cells. Recent evidence shows that EVs might contribute to the pathogenesis of malaria. In addition, EVs hold considerable value in biomarker discovery. However, there are still significant gaps in our understanding of EV biology. So far most of our knowledge about EVs in malaria comes from in vitro work. More field studies are required to gain insight into their contribution to the disease and pathogenesis under physiological conditions. However, to perform research on EVs in low-income regions might be challenging due to the lack of appropriate equipment to isolate EVs. Therefore, there is a need to develop and validate EV extraction protocols applicable to poorly equipped laboratories. We established and validated two protocols for EV isolation from cell culture supernatants, rodent and human plasma. We compared polyethylene glycol (PEG) and salting out (SA) with sodium acetate for precipitation of EVs. We then characterized the EVs by Transmission Electron Microscopy (TEM), Western Blot, Size-exclusion chromatography (SEC), bead-based flow cytometry and protein quantification. Both protocols resulted in efficient purification of EVs without the need of expensive material or ultracentrifugation. Furthermore, the procedure is easily scalable to work with large and small sample volumes. Here, we propose that both of our approaches can be used in resource limited countries, therefore further helping to close the gap in knowledge of EVs during malaria.

12.
J Immunol ; 182(2): 1041-9, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19124747

RESUMO

Impaired functional activity of T regulatory cells has been reported in allergic patients and results in an increased susceptibility to autoimmune diseases. The master regulator of T regulatory cell differentiation, the transcription factor FOXP3, is required for both their development and function. Despite its key role, relatively little is known about the molecular mechanisms regulating foxp3 gene expression. In the present study, the effect of Th1 cytokines on human T regulatory cell differentiation was analyzed at epigenetic and gene expression levels and reveals a mechanism by which the STAT1-activating cytokines IL-27 and IFN-gamma amplify TGF-beta-induced FOXP3 expression. This study shows STAT1 binding elements within the proximal part of the human FOXP3 promoter, which we previously hypothesized to function as a key regulatory unit. Direct binding of STAT1 to the FOXP3 promoter following IL-27 stimulation increases its transactivation process and induces permissive histone modifications in this key region of the FOXP3 promoter, suggesting that FOXP3 expression is promoted by IL-27 by two mechanisms. Our data demonstrate a molecular mechanism regulating FOXP3 expression, which is of considerable interest for the development of new drug targets aiming to support anti-inflammatory mechanisms of the immune system.


Assuntos
Citocinas/fisiologia , Fatores de Transcrição Forkhead/biossíntese , Fatores de Transcrição Forkhead/genética , Interleucinas/fisiologia , Fator de Transcrição STAT1/fisiologia , Células Th1/imunologia , Células Th1/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Células Cultivadas , Amplificação de Genes/imunologia , Regulação da Expressão Gênica/imunologia , Humanos , Tolerância Imunológica/genética , Interferon gama/fisiologia , Ligação Proteica/genética , Ligação Proteica/imunologia , Fator de Transcrição STAT1/biossíntese , Fator de Transcrição STAT1/genética , Ativação Transcricional/imunologia , Fator de Crescimento Transformador beta/fisiologia
13.
Sci Rep ; 11(1): 778, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436661

RESUMO

The human leukemia cell line (HL-60) is an alternative to primary neutrophils in research studies. However, because HL-60 cells proliferate in an incompletely differentiated state, they must undergo differentiation before they acquire the functional properties of neutrophils. Here we provide evidence of swarming and chemotaxis in differentiated HL-60 neutrophil-like cells (dHL-60) using precise microfluidic assays. We found that dimethyl sulfoxide differentiated HL-60 cells (DdHL-60) have a larger size, increased length, and lower ability to squeeze through narrow channels compared to primary neutrophils. They migrate through tapered microfluidic channels slower than primary neutrophils, but faster than HL-60s differentiated by other protocols, e.g., using all-trans retinoic acid. We found that dHL-60 can swarm toward zymosan particle clusters, though they display disorganized migratory patterns and produce swarms of smaller size compared to primary neutrophils.


Assuntos
Fatores Quimiotáticos/farmacologia , Quimiotaxia/fisiologia , Dimetil Sulfóxido/farmacologia , Neutrófilos/fisiologia , Tretinoína/farmacologia , Antineoplásicos/farmacologia , Diferenciação Celular/fisiologia , Crioprotetores/farmacologia , Células HL-60 , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/fisiologia , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos
14.
Front Immunol ; 12: 750512, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707614

RESUMO

Cell-mediated cytotoxicity is an essential immune defense mechanism to fight against viral, bacterial or parasitic infections. Upon recognition of an infected target cell, killer lymphocytes form an immunological synapse to release the content of their cytotoxic granules. Cytotoxic granules of humans contain two membrane-disrupting proteins, perforin and granulysin, as well as a homologous family of five death-inducing serine proteases, the granzymes. The granzymes, after delivery into infected host cells by the membrane disrupting proteins, may contribute to the clearance of microbial pathogens through different mechanisms. The granzymes can induce host cell apoptosis, which deprives intracellular pathogens of their protective niche, therefore limiting their replication. However, many obligate intracellular pathogens have evolved mechanisms to inhibit programed cells death. To overcome these limitations, the granzymes can exert non-cytolytic antimicrobial activities by directly degrading microbial substrates or hijacked host proteins crucial for the replication or survival of the pathogens. The granzymes may also attack factors that mediate microbial virulence, therefore directly affecting their pathogenicity. Many mechanisms applied by the granzymes to eliminate infected cells and microbial pathogens rely on the induction of reactive oxygen species. These reactive oxygen species may be directly cytotoxic or enhance death programs triggered by the granzymes. Here, in the light of the latest advances, we review the antimicrobial activities of the granzymes in regards to their cytolytic and non-cytolytic activities to inhibit pathogen replication and invasion. We also discuss how reactive oxygen species contribute to the various antimicrobial mechanisms exerted by the granzymes.


Assuntos
Granzimas/imunologia , Animais , Morte Celular , Humanos , Infecções/imunologia , Espécies Reativas de Oxigênio/imunologia
15.
Front Immunol ; 12: 643746, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093532

RESUMO

Malaria remains one of the most serious health problems in developing countries. The causative agent of malaria, Plasmodium spp., have a complex life cycle involving multiple developmental stages as well as different morphological, biochemical and metabolic requirements. We recently found that γδ T cells control parasite growth using pore-forming proteins to deliver their cytotoxic proteases, the granzymes, into blood residing parasites. Here, we follow up on the molecular mechanisms of parasite growth inhibition by human pore-forming proteins. We confirm that Plasmodium falciparum infection efficiently depletes the red blood cells of cholesterol, which renders the parasite surrounding membranes susceptible to lysis by prokaryotic membrane disrupting proteins, such as lymphocytic granulysin or the human cathelicidin LL-37. Interestingly, not the cholesterol depletion but rather the simultaneous exposure of phosphatidylserine, a negatively charged phospholipid, triggers resistance of late stage parasitized red blood cells towards the eukaryotic pore forming protein perforin. Overall, by revealing the molecular events we establish here a pathogen-host interaction that involves host cell membrane remodeling that defines the susceptibility towards cytolytic molecules.


Assuntos
Membrana Eritrocítica/imunologia , Hemólise/imunologia , Malária Falciparum/imunologia , Perforina/imunologia , Plasmodium falciparum/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/imunologia , Antígenos de Diferenciação de Linfócitos T , Peptídeos Catiônicos Antimicrobianos/imunologia , Suscetibilidade a Doenças , Membrana Eritrocítica/parasitologia , Humanos , Catelicidinas
16.
PLoS Biol ; 5(12): e329, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18162042

RESUMO

Transcription factors act in concert to induce lineage commitment towards Th1, Th2, or T regulatory (Treg) cells, and their counter-regulatory mechanisms were shown to be critical for polarization between Th1 and Th2 phenotypes. FOXP3 is an essential transcription factor for natural, thymus-derived (nTreg) and inducible Treg (iTreg) commitment; however, the mechanisms regulating its expression are as yet unknown. We describe a mechanism controlling iTreg polarization, which is overruled by the Th2 differentiation pathway. We demonstrated that interleukin 4 (IL-4) present at the time of T cell priming inhibits FOXP3. This inhibitory mechanism was also confirmed in Th2 cells and in T cells of transgenic mice overexpressing GATA-3 in T cells, which are shown to be deficient in transforming growth factor (TGF)-beta-mediated FOXP3 induction. This inhibition is mediated by direct binding of GATA3 to the FOXP3 promoter, which represses its transactivation process. Therefore, this study provides a new understanding of tolerance development, controlled by a type 2 immune response. IL-4 treatment in mice reduces iTreg cell frequency, highlighting that therapeutic approaches that target IL-4 or GATA3 might provide new preventive strategies facilitating tolerance induction particularly in Th2-mediated diseases, such as allergy.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Fator de Transcrição GATA3/metabolismo , Linfócitos T Reguladores/metabolismo , Células Th2/imunologia , Células Th2/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Células Cultivadas , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Humanos , Interleucina-4/biossíntese , Interleucina-4/farmacologia , Cinética , Camundongos , Regiões Promotoras Genéticas/genética , Linfócitos T Reguladores/química , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Células Th2/efeitos dos fármacos
17.
J Allergy Clin Immunol ; 123(3): 588-95, 595.e1-7, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19178935

RESUMO

BACKGROUND: T(H)17 cells are of pathologic relevance in autoimmune disorders and presumably also in allergy and asthma. Regulatory T (Treg) cells, in contrast, suppress inflammatory and allergen-driven responses. Despite these disparate functions, both T-cell subsets have been shown to be dependent on TGF-beta for their development. OBJECTIVE: The aim of the study was to analyze the differentiation and function of human T(H)17 cells in comparison with other T(H) cell subsets. METHODS: Naive human CD4(+) T cells were differentiated in vitro, and gene expression was analyzed by means of quantitative real-time PCR, ELISA, and immunofluorescence. The function of T(H) cell subsets was assessed by monitoring the response of primary bronchial epithelial cells in coculture experiments. RESULTS: In vitro differentiated T(H)17 cells differ from Treg and other T(H) cells in their potency to induce IL-6 and IL-1beta expression in primary bronchial epithelial cells. TGF-beta, IL-1beta, IL-6, and IL-23 are necessary during T(H)17 cell differentiation to acquire these functions, including IL-17 production. In contrast, TGF-beta alone is necessary and sufficient to induce the transcription factor RORC2. This transcription factor, previously thought to be specific for T(H)17 cells, is also expressed in Treg cells, CD25(+) cells, cytotoxic T cells, and natural killer T cells. CONCLUSION: This study demonstrates mechanisms of differentiation to human T(H)17 cells, a subset that effectively and uniquely modulates the function of primary bronchial epithelial cells.


Assuntos
Diferenciação Celular/fisiologia , Células Epiteliais/imunologia , Interleucina-17/imunologia , Receptores do Ácido Retinoico/imunologia , Receptores dos Hormônios Tireóideos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/imunologia , Técnicas de Cocultura , Células Epiteliais/metabolismo , Expressão Gênica , Humanos , Interleucina-17/metabolismo , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Interleucina-23/imunologia , Interleucina-23/metabolismo , Interleucina-6/imunologia , Interleucina-6/metabolismo , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Receptores do Ácido Retinoico/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/metabolismo
18.
Front Immunol ; 11: 22, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32082312

RESUMO

Malaria infection caused by the Plasmodium species is a complex disease in which a fine balance between host and parasite factors determine the disease severity. While in some individuals, the infection will trigger only a mild and uncomplicated disease, other individuals will develop severe complications which lead to death. Extracellular vesicles (EVs) secreted by infected red blood cells (iRBCs), as well as other host cells, are important regulators of the balance that determines the disease outcome. In addition, EVs constitute a robust mode of cell-to-cell communication by transferring signaling cargoes between parasites, and between parasites and host, without requiring cellular contact. The transfer of membrane and cytosolic proteins, lipids, DNA, and RNA through EVs not only modulate the immune response, it also mediates cellular communication between parasites to synchronize the transmission stage. Here, we review the recent progress in understanding EV roles during malaria.


Assuntos
Comunicação Celular/imunologia , Vesículas Extracelulares/metabolismo , Malária/imunologia , Plasmodium/crescimento & desenvolvimento , Transdução de Sinais/imunologia , Animais , Modelos Animais de Doenças , Eritrócitos/imunologia , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Vesículas Extracelulares/parasitologia , Interações Hospedeiro-Parasita/imunologia , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/parasitologia , Estágios do Ciclo de Vida , Malária/parasitologia , Camundongos , RNA/metabolismo
19.
iScience ; 23(3): 100932, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32151975

RESUMO

Pathogenic bacteria secrete virulence factors that interact with the human host to establish infections. The human immune system evolved multiple mechanisms to fight bacterial invaders, including immune proteases that were demonstrated to contribute crucially to antibacterial defense. Here we show that granzyme B degrades multiple secreted virulence mediators from Listeria monocytogenes, Salmonella typhimurium, and Mycobacteria tuberculosis. Pathogenic bacteria, when infected in the presence of granzyme B or granzyme-secreting killer cells, fail to grow in human macrophages and epithelial cells owing to their crippled virulence. A granzyme B-uncleavable mutant form of the major Listeria virulence factor, listeriolysin O, rescued the virulence defect in response to granzyme treatment. Hence, we link the degradation of a single factor with the observed decrease in virulent bacteria growth. Overall, we reveal here an innate immune barrier function of granzyme B by disrupting bacterial virulence to facilitate bacteria clearance by bystander immune and non-immune cells.

20.
Pathogens ; 9(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878288

RESUMO

Microglia are the chief immune cells of the brain and have been reported to be activated in severe malaria. Their activation may drive towards neuroinflammation in cerebral malaria. Malaria-infected red blood cell derived-extracellular vesicles (MiREVs) are produced during the blood stage of malaria infection. They mediate intercellular communication and immune regulation, among other functions. During cerebral malaria, the breakdown of the blood-brain barrier can promote the migration of substances such as MiREVs from the periphery into the brain, targeting cells such as microglia. Microglia and extracellular vesicle interactions in different pathological conditions have been reported to induce neuroinflammation. Unlike in astrocytes, microglia-extracellular vesicle interaction has not yet been described in malaria infection. Therefore, in this study, we aimed to investigate the uptake of MiREVs by human microglia cells and their cytokine response. Human blood monocyte-derived microglia (MoMi) were generated from buffy coats of anonymous healthy donors using Ficoll-Paque density gradient centrifugation. The MiREVs were isolated from the Plasmodium falciparum cultures. They were purified by ultracentrifugation and labeled with PKH67 green fluorescent dye. The internalization of MiREVs by MoMi was observed after 4 h of co-incubation on coverslips placed in a 24-well plate at 37 °C using confocal microscopy. Cytokine-gene expression was investigated using rt-qPCR, following the stimulation of the MoMi cells with supernatants from the parasite cultures at 2, 4, and 24 h, respectively. MiREVs were internalized by the microglia and accumulated in the perinuclear region. MiREVs-treated cells increased gene expression of the inflammatory cytokine TNFα and reduced gene expression of the immune suppressive IL-10. Overall, the results indicate that MiREVs may act on microglia, which would contribute to enhanced inflammation in cerebral malaria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA