Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Rep ; 44(5): 419-427, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28956216

RESUMO

Myostatin (MSTN) is a strong inhibitor of skeletal muscle growth in human and other vertebrates. Its transcription is controlled by a proximal promoter/enhancer (Mstn P/E) containing a TATA box besides CREB, NF-Y, MEIS1 and FXR transcription factor binding sites (TFBSs), which are conserved throughout evolution. The aim of this work was to investigate the role of these TFBSs on Mstn P/E activity and evaluate the potential of their putative ligands as Mstn trans regulators. Mstn P/E mutant constructs were used to establish the role of conserved TFBSs using dual-luciferase assays. Expression analyses were performed by RT-PCR and in situ hybridization in C2C12 myoblasts and E10.5 mouse embryos, respectively. Our results revealed that CREB, NF-Y and MEIS1 sites are required to balance Mstn P/E activity, keeping Mstn transcription within basal levels during myoblast proliferation. Furthermore, our data showed that NF-Y site is essential, although not sufficient, to mediate Mstn P/E transcriptional activity. In turn, CREB and MEIS1 binding sites seem to depend on the presence of NF-Y site to induce Mstn P/E. FXR appears not to confer any effect on Mstn P/E activity, except in the absence of all other conserved TFBS. Accordingly, expression studies pointed to CREB, NF-Y and MEIS1 but not to FXR factors as possible regulators of Mstn transcription in the myogenic context. Altogether, our findings indicated that CREB, NF-Y and MEIS1 conserved sites are essential to control basal Mstn transcription during early myogenesis, possibly by interacting with these or other related factors.


Assuntos
Miostatina/genética , Miostatina/metabolismo , Animais , Sítios de Ligação , Fator de Ligação a CCAAT , Proteína de Ligação a CREB , Linhagem Celular , Sequência Conservada , Humanos , Camundongos , Desenvolvimento Muscular/genética , Proteína Meis1 , Mioblastos/metabolismo , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
2.
J Anim Sci Biotechnol ; 10: 32, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31044074

RESUMO

Myostatin (MSTN) is one of the key factors regulating myogenesis. Because of its role as a negative regulator of muscle mass deposition, much interest has been given to its protein and, in recent years, several studies have analysed MSTN gene regulation. This review discusses the MSTN gene promoter, focusing on its structure in several animal species, both vertebrate and invertebrate. We report the important binding sites considering their degree of phylogenetic conservation and roles they play in the promoter activity. Finally, we discuss recent studies focusing on MSTN gene regulation via promoter manipulation and the potential applications they have both in medicine and agriculture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA