RESUMO
The ß-haemoglobinopathies, such as sickle cell disease and ß-thalassaemia, are caused by mutations in the ß-globin (HBB) gene and affect millions of people worldwide. Ex vivo gene correction in patient-derived haematopoietic stem cells followed by autologous transplantation could be used to cure ß-haemoglobinopathies. Here we present a CRISPR/Cas9 gene-editing system that combines Cas9 ribonucleoproteins and adeno-associated viral vector delivery of a homologous donor to achieve homologous recombination at the HBB gene in haematopoietic stem cells. Notably, we devise an enrichment model to purify a population of haematopoietic stem and progenitor cells with more than 90% targeted integration. We also show efficient correction of the Glu6Val mutation responsible for sickle cell disease by using patient-derived stem and progenitor cells that, after differentiation into erythrocytes, express adult ß-globin (HbA) messenger RNA, which confirms intact transcriptional regulation of edited HBB alleles. Collectively, these preclinical studies outline a CRISPR-based methodology for targeting haematopoietic stem cells by homologous recombination at the HBB locus to advance the development of next-generation therapies for ß-haemoglobinopathies.
Assuntos
Anemia Falciforme/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Marcação de Genes , Terapia Genética/métodos , Células-Tronco Hematopoéticas/metabolismo , Globinas beta/genética , Alelos , Anemia Falciforme/patologia , Anemia Falciforme/terapia , Animais , Antígenos CD34/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Diferenciação Celular , Linhagem da Célula , Separação Celular , Dependovirus/genética , Eritrócitos , Feminino , Citometria de Fluxo , Genes Reporter , Recombinação Homóloga , Humanos , Imãs , Camundongos Endogâmicos NOD , Camundongos SCID , Microesferas , Mutação , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Talassemia beta/genética , Talassemia beta/terapiaRESUMO
PURPOSE OF REVIEW: Recent technological advances have led to an increased ability to define the gene expression profile of the cardiac conduction system (CCS). Here, we review the most salient studies to emerge in recent years and discuss existing gaps in our knowledge as well as future areas of investigation. RECENT FINDINGS: Molecular profiling of the CCS spans several decades. However, the advent of high-throughput sequencing strategies has allowed for the discovery of unique transcriptional programs of the many diverse CCS cell types. The CCS, a diverse structure with significant inter- and intra-component cellular heterogeneity, is essential to the normal function of the heart. Progress in transcriptomic profiling has improved the resolution and depth of characterization of these unique and clinically relevant CCS cell types. Future studies leveraging this big data will play a crucial role in improving our understanding of CCS development and function as well as translating these findings into tangible translational tools for the improved detection, prevention, and treatment of cardiac arrhythmias.
Assuntos
Arritmias Cardíacas , Sistema de Condução Cardíaco , Arritmias Cardíacas/genética , Perfilação da Expressão Gênica , Coração , Humanos , TranscriptomaRESUMO
Accidental injury to the cardiac conduction system (CCS), a network of specialized cells embedded within the heart and indistinguishable from the surrounding heart muscle tissue, is a major complication in cardiac surgeries. Here, we addressed this unmet need by engineering targeted antibody-dye conjugates directed against the CCS, allowing for the visualization of the CCS in vivo following a single intravenous injection in mice. These optical imaging tools showed high sensitivity, specificity, and resolution, with no adverse effects on CCS function. Further, with the goal of creating a viable prototype for human use, we generated a fully human monoclonal Fab that similarly targets the CCS with high specificity. We demonstrate that, when conjugated to an alternative cargo, this Fab can also be used to modulate CCS biology in vivo, providing a proof of principle for targeted cardiac therapeutics. Finally, in performing differential gene expression analyses of the entire murine CCS at single-cell resolution, we uncovered and validated a suite of additional cell surface markers that can be used to molecularly target the distinct subcomponents of the CCS, each prone to distinct life-threatening arrhythmias. These findings lay the foundation for translational approaches targeting the CCS for visualization and therapy in cardiothoracic surgery, cardiac imaging, and arrhythmia management.
Assuntos
Sistema de Condução Cardíaco , Terapia de Alvo Molecular , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Coração/fisiologia , Sistema de Condução Cardíaco/metabolismo , Humanos , Camundongos , MiocárdioRESUMO
Umbilical cord blood is an important graft source in the treatment of many genetic, hematologic, and immunologic disorders by hematopoietic stem cell transplantation. Millions of cord blood units have been collected and stored for clinical use since the inception of cord blood banking in 1989. However, the use of cord blood in biomedical research has been limited by access to viable samples. Here, we present a cost-effective, self-sustaining model for the procurement of fresh umbilical cord blood components for research purposes within hospital-affiliated academic institutions.
Assuntos
Pesquisa Biomédica/organização & administração , Bancos de Sangue/organização & administração , Sangue Fetal , Modelos Organizacionais , Academias e Institutos/economia , Academias e Institutos/organização & administração , Academias e Institutos/normas , Pesquisa Biomédica/economia , Pesquisa Biomédica/métodos , Pesquisa Biomédica/normas , Bancos de Sangue/economia , Bancos de Sangue/normas , Coleta de Amostras Sanguíneas/economia , Coleta de Amostras Sanguíneas/métodos , Coleta de Amostras Sanguíneas/normas , California , Análise Custo-Benefício , Feminino , Sangue Fetal/citologia , Sangue Fetal/transplante , Transplante de Células-Tronco Hematopoéticas/economia , Transplante de Células-Tronco Hematopoéticas/métodos , Transplante de Células-Tronco Hematopoéticas/normas , Humanos , Recém-Nascido , GravidezRESUMO
Sickle cell disease (SCD) is the most common serious monogenic disease with 300,000 births annually worldwide. SCD is an autosomal recessive disease resulting from a single point mutation in codon six of the ß-globin gene (HBB). Ex vivo ß-globin gene correction in autologous patient-derived hematopoietic stem and progenitor cells (HSPCs) may potentially provide a curative treatment for SCD. We previously developed a CRISPR-Cas9 gene targeting strategy that uses high-fidelity Cas9 precomplexed with chemically modified guide RNAs to induce recombinant adeno-associated virus serotype 6 (rAAV6)-mediated HBB gene correction of the SCD-causing mutation in HSPCs. Here, we demonstrate the preclinical feasibility, efficacy, and toxicology of HBB gene correction in plerixafor-mobilized CD34+ cells from healthy and SCD patient donors (gcHBB-SCD). We achieved up to 60% HBB allelic correction in clinical-scale gcHBB-SCD manufacturing. After transplant into immunodeficient NSG mice, 20% gene correction was achieved with multilineage engraftment. The long-term safety, tumorigenicity, and toxicology study demonstrated no evidence of abnormal hematopoiesis, genotoxicity, or tumorigenicity from the engrafted gcHBB-SCD drug product. Together, these preclinical data support the safety, efficacy, and reproducibility of this gene correction strategy for initiation of a phase 1/2 clinical trial in patients with SCD.
Assuntos
Anemia Falciforme , Compostos Heterocíclicos , Anemia Falciforme/genética , Anemia Falciforme/terapia , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes , Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Humanos , Camundongos , Reprodutibilidade dos Testes , Globinas beta/genéticaRESUMO
Human mesenchymal stromal cells (hMSCs) are a promising source for engineered cell-based therapies in which genetic engineering could enhance therapeutic efficacy and install novel cellular functions. Here, we describe an optimized Cas9-AAV6-based genome editing tool platform for site-specific mutagenesis and integration of up to more than 3 kilobases of exogenous DNA in the genome of hMSCs derived from the bone marrow, adipose tissue, and umbilical cord blood without altering their ex vivo characteristics. We generate safe harbor-integrated lines of engineered hMSCs and show that engineered luciferase-expressing hMSCs are transiently active in vivo in wound beds of db/db mice. Moreover, we generate PDGF-BB- and VEGFA-hypersecreting hMSC lines as short-term, local wound healing agents with superior therapeutic efficacy over wildtype hMSCs in the diabetic mouse model without replacing resident cells long-term. This study establishes a precise genetic engineering platform for genetic studies of hMSCs and development of engineered hMSC-based therapies.
Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Pele/patologia , Cicatrização , Animais , Proliferação de Células , Sobrevivência Celular , Reagentes de Ligações Cruzadas/química , Dependovirus , Edição de Genes , Proteínas de Fluorescência Verde/metabolismo , Humanos , Hidrogéis/química , Cinética , Camundongos , Proteínas Proto-Oncogênicas c-sis , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The CRISPR-Cas9 system is a powerful tool for genome editing, which allows the precise modification of specific DNA sequences. Many efforts are underway to use the CRISPR-Cas9 system to therapeutically correct human genetic diseases1-6. The most widely used orthologs of Cas9 are derived from Staphylococcus aureus and Streptococcus pyogenes5,7. Given that these two bacterial species infect the human population at high frequencies8,9, we hypothesized that humans may harbor preexisting adaptive immune responses to the Cas9 orthologs derived from these bacterial species, SaCas9 (S. aureus) and SpCas9 (S. pyogenes). By probing human serum for the presence of anti-Cas9 antibodies using an enzyme-linked immunosorbent assay, we detected antibodies against both SaCas9 and SpCas9 in 78% and 58% of donors, respectively. We also found anti-SaCas9 T cells in 78% and anti-SpCas9 T cells in 67% of donors, which demonstrates a high prevalence of antigen-specific T cells against both orthologs. We confirmed that these T cells were Cas9-specific by demonstrating a Cas9-specific cytokine response following isolation, expansion, and antigen restimulation. Together, these data demonstrate that there are preexisting humoral and cell-mediated adaptive immune responses to Cas9 in humans, a finding that should be taken into account as the CRISPR-Cas9 system moves toward clinical trials.
Assuntos
Imunidade Adaptativa , Proteína 9 Associada à CRISPR/metabolismo , Adulto , Separação Celular , Feminino , Humanos , Imunidade Humoral , Masculino , Linfócitos T/imunologiaRESUMO
The original version of this Article omitted the following from the Acknowledgements: "G.B. acknowledges the support from the Cancer Prevention and Research Institute of Texas (RR140081 and RR170721)."This has now been corrected in both the PDF and HTML versions of the Article.
RESUMO
Gene correction in human long-term hematopoietic stem cells (LT-HSCs) could be an effective therapy for monogenic diseases of the blood and immune system. Here we describe an approach for X-linked sSevere cCombined iImmunodeficiency (SCID-X1) using targeted integration of a cDNA into the endogenous start codon to functionally correct disease-causing mutations throughout the gene. Using a CRISPR-Cas9/AAV6 based strategy, we achieve up to 20% targeted integration frequencies in LT-HSCs. As measures of the lack of toxicity we observe no evidence of abnormal hematopoiesis following transplantation and no evidence of off-target mutations using a high-fidelity Cas9 as a ribonucleoprotein complex. We achieve high levels of targeting frequencies (median 45%) in CD34+ HSPCs from six SCID-X1 patients and demonstrate rescue of lymphopoietic defect in a patient derived HSPC population in vitro and in vivo. In sum, our study provides specificity, toxicity and efficacy data supportive of clinical development of genome editing to treat SCID-Xl.
Assuntos
DNA Complementar/genética , Edição de Genes/métodos , Transplante de Células-Tronco Hematopoéticas , Subunidade gama Comum de Receptores de Interleucina/genética , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/terapia , Animais , Antígenos CD34/metabolismo , Sistemas CRISPR-Cas/genética , Linhagem Celular , Códon de Iniciação/genética , Dependovirus , Éxons/genética , Sangue Fetal/citologia , Vetores Genéticos/genética , Voluntários Saudáveis , Células-Tronco Hematopoéticas/metabolismo , Humanos , Masculino , Camundongos , Mutação , Parvovirinae/genética , Cultura Primária de Células , Fatores de Tempo , Transdução Genética/métodos , Quimeras de Transplante/genética , Transplante Heterólogo/métodos , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/genéticaRESUMO
Lysosomal enzyme deficiencies comprise a large group of genetic disorders that generally lack effective treatments. A potential treatment approach is to engineer the patient's own hematopoietic system to express high levels of the deficient enzyme, thereby correcting the biochemical defect and halting disease progression. Here, we present an efficient ex vivo genome editing approach using CRISPR-Cas9 that targets the lysosomal enzyme iduronidase to the CCR5 safe harbor locus in human CD34+ hematopoietic stem and progenitor cells. The modified cells secrete supra-endogenous enzyme levels, maintain long-term repopulation and multi-lineage differentiation potential, and can improve biochemical and phenotypic abnormalities in an immunocompromised mouse model of Mucopolysaccharidosis type I. These studies provide support for the development of genome-edited CD34+ hematopoietic stem and progenitor cells as a potential treatment for Mucopolysaccharidosis type I. The safe harbor approach constitutes a flexible platform for the expression of lysosomal enzymes making it applicable to other lysosomal storage disorders.
Assuntos
Edição de Genes/métodos , Genoma Humano , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/metabolismo , Iduronidase/metabolismo , Mucopolissacaridose I/terapia , Animais , Antígenos CD34/genética , Antígenos CD34/metabolismo , Sistemas CRISPR-Cas , Terapia Genética/métodos , Humanos , Iduronidase/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Mucopolissacaridose I/genética , Mucopolissacaridose I/patologia , Células NIH 3T3 , Fenótipo , Receptores CCR5/genética , Receptores CCR5/metabolismo , Transplante HeterólogoRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.