Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Veg Hist Archaeobot ; 27(2): 411-418, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31983811

RESUMO

Tracking changes in biodiversity through time requires an understanding of the relationship between modern diversity and how this diversity is preserved in the fossil record. Fossil pollen is one way in which past vegetation diversity can be reconstructed. However, there is limited understanding of modern pollen-vegetation diversity relationships from biodiverse tropical ecosystems. Here, pollen (palynological) richness and diversity (Hill N 1) are compared with vegetation richness and diversity from forest and savannah ecosystems in the New World and Old World tropics (Neotropics and Palaeotropics). Modern pollen data were obtained from artificial pollen traps deployed in 1-ha vegetation study plots from which vegetation inventories had been completed in Bolivia and Ghana. Pollen counts were obtained from 15 to 22 traps per plot, and aggregated pollen sums for each plot were > 2,500. The palynological richness/diversity values from the Neotropics were moist evergreen forest = 86/6.8, semi-deciduous dry forest = 111/21.9, wooded savannah = 138/31.5, and from the Palaeotropics wet evergreen forest = 144/28.3, semi-deciduous moist forest = 104/4.4, forest-savannah transition = 121/14.1; the corresponding vegetation richness/diversity was 100/36.7, 80/38.7 and 71/39.4 (Neotropics), and 101/54.8, 87/45.5 and 71/34.5 (Palaeotropics). No consistent relationship was found between palynological richness/diversity, and plot vegetation richness/diversity, due to the differential influence of other factors such as landscape diversity, pollination strategy, and pollen source area. Palynological richness exceeded vegetation richness, while pollen diversity was lower than vegetation diversity. The relatively high global diversity of tropical vegetation was found to be reflected in the pollen rain.

2.
PLoS One ; 12(9): e0185303, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28945794

RESUMO

INTRODUCTION: Plasmodium falciparum induced antibodies are key components of anti-malarial immunity in malaria endemic areas, but their antigen targets can be polymorphic. Induction of a high proportion of strain-specific antibodies will limit the recognition of a broad diversity of parasite strains by these responses. There are indications that circulating parasite diversity varies with malaria transmission intensity, and this may affect the specificity of elicited anti-malarial antibodies. This study therefore assessed the effect of varying malaria transmission patterns on the specificity of elicited antibody responses and to identify possible antibody correlates of naturally acquired immunity to malaria in children in an area of Ghana with seasonal malaria transmission. METHODS: This retrospective study utilized plasma samples collected longitudinally at six time points from children aged one to five years. Multiplex assays were used to measure antibody levels against four P. falciparum AMA 1 variants (from the 3D7, FVO, HB3 and CAMP parasite strains) and the 3D7 variant of the EBA 175 region II antigen and the levels compared between symptomatic and asymptomatic children. The relative proportions of cross-reactive and strain-specific antibodies against the four AMA 1 variants per sampling time point were assessed by Bland-Altman plots. The levels of antibodies against allelic AMA1 variants, measured by singleplex and multiplex luminex assays, were also compared. RESULTS: The data show that increased transmission intensity is associated with higher levels of cross-reactive antibody responses, most likely a result of a greater proportion of multiple parasite clone infections during the high transmission period. Anti-AMA1 antibodies were however associated with a history of infection rather than protection in this age group. CONCLUSION: The data contribute to understanding the underlying mechanism of the acquisition of strain-transcending antibody immunity following repeated exposure to diverse parasite strains.


Assuntos
Anticorpos Antiprotozoários/sangue , Malária Falciparum/imunologia , Malária Falciparum/transmissão , Sequência de Aminoácidos , Animais , Especificidade de Anticorpos , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Criança , Pré-Escolar , Estudos de Coortes , Reações Cruzadas , Feminino , Gana/epidemiologia , Humanos , Imunoensaio/métodos , Lactente , Estudos Longitudinais , Malária Falciparum/epidemiologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA