Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Clin Exp Urol ; 12(2): 52-63, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736617

RESUMO

Chronic prostatitis/chronic pelvic pain syndrome (CP/CPSS) is a debilitating condition characterized by prostate inflammation, pain and urinary symptoms. The immune system's response to self-antigens is a contributing factor to CP/CPSS. In this review, we examine the use of experimental autoimmune prostatitis (EAP) in rodents to model salient features of autoimmune mediated CP/CPSS. By exploring etiological factors, immunological mechanisms, and emerging therapeutic strategies, our aim is to enhance our understanding of CP/CPSS pathogenesis and promote the development of strategies to test innovative interventions using the EAP pre-clinical model.

2.
Am J Clin Exp Urol ; 10(2): 82-97, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35528463

RESUMO

The impact of developmental exposure to environmental chemicals on lower urinary tract function is not well understood, despite the fact that these chemicals could contribute to etiologically complex lower urinary tract symptoms (LUTS). Polychlorinated biphenyls (PCBs) are environmental toxicants known to be detrimental to the central nervous system, but their impact on voiding function in mouse models is not known. Therefore, we test whether developmental exposure to PCBs is capable of altering voiding physiology in young adult mice. C57Bl/6J female mice received a daily oral dose of the MARBLES PCB mixture for two weeks prior to mating and through gestation and lactation. The mixture mimics the profile of PCBs found in a contemporary population of pregnant women. Voiding function was then tested in young adult offspring using void spot assay, uroflowmetry and anesthetized cystometry. PCB effects were sex and dose dependent. Overall, PCBs led to increases in small size urine spots in both sexes with males producing more drop-like voids and greater peak pressure during a voiding cycle while females displayed decreases in void duration and intervoid interval. Together, these results indicate that developmental exposure to PCBs are capable of altering voiding physiology in young adult mice. Further work to identify the underlying mechanisms driving these changes may help develop more effective preventative or therapeutic strategies for LUTS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA