Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 624(7991): 282-288, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092911

RESUMO

Miniaturized lasers play a central role in the infrastructure of modern information society. The breakthrough in laser miniaturization beyond the wavelength scale has opened up new opportunities for a wide range of applications1-4, as well as for investigating light-matter interactions in extreme-optical-field localization and lasing-mode engineering5-19. An ultimate objective of microscale laser research is to develop reconfigurable coherent nanolaser arrays that can simultaneously enhance information capacity and functionality. However, the absence of a suitable physical mechanism for reconfiguring nanolaser cavities hinders the demonstration of nanolasers in either a single cavity or a fixed array. Here we propose and demonstrate moiré nanolaser arrays based on optical flatbands in twisted photonic graphene lattices, in which coherent nanolasing is realized from a single nanocavity to reconfigurable arrays of nanocavities. We observe synchronized nanolaser arrays exhibiting high spatial and spectral coherence, across a range of distinct patterns, including P, K and U shapes and the Chinese characters '' and '' ('China' in Chinese). Moreover, we obtain nanolaser arrays that emit with spatially varying relative phases, allowing us to manipulate emission directions. Our work lays the foundation for the development of reconfigurable active devices that have potential applications in communication, LiDAR (light detection and ranging), optical computing and imaging.

2.
BMC Bioinformatics ; 21(1): 133, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245403

RESUMO

BACKGROUND: Despite the great advance of protein structure prediction, accurate prediction of the structures of mainly ß proteins is still highly challenging, but could be assisted by the knowledge of residue-residue pairing in ß strands. Previously, we proposed a ridge-detection-based algorithm RDb2C that adopted a multi-stage random forest framework to predict the ß-ß pairing given the amino acid sequence of a protein. RESULTS: In this work, we developed a second version of this algorithm, RDb2C2, by employing the residual neural network to further enhance the prediction accuracy. In the benchmark test, this new algorithm improves the F1-score by > 10 percentage points, reaching impressively high values of ~ 72% and ~ 73% in the BetaSheet916 and BetaSheet1452 sets, respectively. CONCLUSION: Our new method promotes the prediction accuracy of ß-ß pairing to a new level and the prediction results could better assist the structure modeling of mainly ß proteins. We prepared an online server of RDb2C2 at http://structpred.life.tsinghua.edu.cn/rdb2c2.html.


Assuntos
Algoritmos , Conformação Proteica em Folha beta , Análise de Sequência de Proteína/métodos , Redes Neurais de Computação
3.
BMC Bioinformatics ; 19(1): 146, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29673311

RESUMO

BACKGROUND: Despite the rapid progress of protein residue contact prediction, predicted residue contact maps frequently contain many errors. However, information of residue pairing in ß strands could be extracted from a noisy contact map, due to the presence of characteristic contact patterns in ß-ß interactions. This information may benefit the tertiary structure prediction of mainly ß proteins. In this work, we propose a novel ridge-detection-based ß-ß contact predictor to identify residue pairing in ß strands from any predicted residue contact map. RESULTS: Our algorithm RDb2C adopts ridge detection, a well-developed technique in computer image processing, to capture consecutive residue contacts, and then utilizes a novel multi-stage random forest framework to integrate the ridge information and additional features for prediction. Starting from the predicted contact map of CCMpred, RDb2C remarkably outperforms all state-of-the-art methods on two conventional test sets of ß proteins (BetaSheet916 and BetaSheet1452), and achieves F1-scores of ~ 62% and ~ 76% at the residue level and strand level, respectively. Taking the prediction of the more advanced RaptorX-Contact as input, RDb2C achieves impressively higher performance, with F1-scores reaching ~ 76% and ~ 86% at the residue level and strand level, respectively. In a test of structural modeling using the top 1 L predicted contacts as constraints, for 61 mainly ß proteins, the average TM-score achieves 0.442 when using the raw RaptorX-Contact prediction, but increases to 0.506 when using the improved prediction by RDb2C. CONCLUSION: Our method can significantly improve the prediction of ß-ß contacts from any predicted residue contact maps. Prediction results of our algorithm could be directly applied to effectively facilitate the practical structure prediction of mainly ß proteins. AVAILABILITY: All source data and codes are available at http://166.111.152.91/Downloads.html or the GitHub address of https://github.com/wzmao/RDb2C .


Assuntos
Aminoácidos/química , Biologia Computacional/métodos , Proteínas/química , Algoritmos , Modelos Moleculares , Conformação Proteica em Folha beta , Estrutura Terciária de Proteína , Reprodutibilidade dos Testes
4.
Proteins ; 85(12): 2162-2169, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28833538

RESUMO

Helix-helix interactions are crucial in the structure assembly, stability and function of helix-rich proteins including many membrane proteins. In spite of remarkable progresses over the past decades, the accuracy of predicting protein structures from their amino acid sequences is still far from satisfaction. In this work, we focused on a simpler problem, the prediction of helix-helix interactions, the results of which could facilitate practical protein structure prediction by constraining the sampling space. Specifically, we started from the noisy 2D residue contact maps derived from correlated residue mutations, and utilized ridge detection to identify the characteristic residue contact patterns for helix-helix interactions. The ridge information as well as a few additional features were then fed into a machine learning model HHConPred to predict interactions between helix pairs. In an independent test, our method achieved an F-measure of ∼60% for predicting helix-helix interactions. Moreover, although the model was trained mainly using soluble proteins, it could be extended to membrane proteins with at least comparable performance relatively to previous approaches that were generated purely using membrane proteins. All data and source codes are available at http://166.111.152.91/Downloads.html or https://github.com/dpxiong/HHConPred.


Assuntos
Biologia Computacional/métodos , Aprendizado de Máquina , Proteínas de Membrana/química , Sequência de Aminoácidos , Sítios de Ligação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas
5.
Bioinformatics ; 31(12): 1929-37, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25697822

RESUMO

MOTIVATION: With rapid accumulation of sequence data on several species, extracting rational and systematic information from multiple sequence alignments (MSAs) is becoming increasingly important. Currently, there is a plethora of computational methods for investigating coupled evolutionary changes in pairs of positions along the amino acid sequence, and making inferences on structure and function. Yet, the significance of coevolution signals remains to be established. Also, a large number of false positives (FPs) arise from insufficient MSA size, phylogenetic background and indirect couplings. RESULTS: Here, a set of 16 pairs of non-interacting proteins is thoroughly examined to assess the effectiveness and limitations of different methods. The analysis shows that recent computationally expensive methods designed to remove biases from indirect couplings outperform others in detecting tertiary structural contacts as well as eliminating intermolecular FPs; whereas traditional methods such as mutual information benefit from refinements such as shuffling, while being highly efficient. Computations repeated with 2,330 pairs of protein families from the Negatome database corroborated these results. Finally, using a training dataset of 162 families of proteins, we propose a combined method that outperforms existing individual methods. Overall, the study provides simple guidelines towards the choice of suitable methods and strategies based on available MSA size and computing resources. AVAILABILITY AND IMPLEMENTATION: Software is freely available through the Evol component of ProDy API.


Assuntos
Algoritmos , Biologia Computacional/métodos , Evolução Molecular , Proteínas/genética , Alinhamento de Sequência/métodos , Software , Simulação por Computador , Humanos , Filogenia , Proteínas/química
6.
Bioinformatics ; 30(18): 2681-3, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24849577

RESUMO

UNLABELLED: Correlations between sequence evolution and structural dynamics are of utmost importance in understanding the molecular mechanisms of function and their evolution. We have integrated Evol, a new package for fast and efficient comparative analysis of evolutionary patterns and conformational dynamics, into ProDy, a computational toolbox designed for inferring protein dynamics from experimental and theoretical data. Using information-theoretic approaches, Evol coanalyzes conservation and coevolution profiles extracted from multiple sequence alignments of protein families with their inferred dynamics. AVAILABILITY AND IMPLEMENTATION: ProDy and Evol are open-source and freely available under MIT License from http://prody.csb.pitt.edu/.


Assuntos
Biologia Computacional/métodos , Evolução Molecular , Proteínas/química , Proteínas/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica , Alinhamento de Sequência , Software
7.
PLoS Comput Biol ; 10(5): e1003624, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24831085

RESUMO

The versatile functions of the heat shock protein 70 (Hsp70) family of molecular chaperones rely on allosteric interactions between their nucleotide-binding and substrate-binding domains, NBD and SBD. Understanding the mechanism of interdomain allostery is essential to rational design of Hsp70 modulators. Yet, despite significant progress in recent years, how the two Hsp70 domains regulate each other's activity remains elusive. Covariance data from experiments and computations emerged in recent years as valuable sources of information towards gaining insights into the molecular events that mediate allostery. In the present study, conservation and covariance properties derived from both sequence and structural dynamics data are integrated with results from Perturbation Response Scanning and in vivo functional assays, so as to establish the dynamical basis of interdomain signal transduction in Hsp70s. Our study highlights the critical roles of SBD residues D481 and T417 in mediating the coupled motions of the two domains, as well as that of G506 in enabling the movements of the α-helical lid with respect to the ß-sandwich. It also draws attention to the distinctive role of the NBD subdomains: Subdomain IA acts as a key mediator of signal transduction between the ATP- and substrate-binding sites, this function being achieved by a cascade of interactions predominantly involving conserved residues such as V139, D148, R167 and K155. Subdomain IIA, on the other hand, is distinguished by strong coevolutionary signals (with the SBD) exhibited by a series of residues (D211, E217, L219, T383) implicated in DnaJ recognition. The occurrence of coevolving residues at the DnaJ recognition region parallels the behavior recently observed at the nucleotide-exchange-factor recognition region of subdomain IIB. These findings suggest that Hsp70 tends to adapt to co-chaperone recognition and activity via coevolving residues, whereas interdomain allostery, critical to chaperoning, is robustly enabled by conserved interactions.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/ultraestrutura , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/ultraestrutura , Modelos Químicos , Modelos Moleculares , Sítios de Ligação , Simulação por Computador , Chaperonas Moleculares/química , Chaperonas Moleculares/ultraestrutura , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína
8.
Fundam Res ; 3(4): 537-543, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38933544

RESUMO

Simultaneous localization of light to extreme spatial and spectral scales is of high importance for testing fundamental physics and various applications. However, there is a longstanding trade-off between localizing a light field in space and in frequency. Here we discover a new class of twisted lattice nanocavities based on mode locking in momentum space. The twisted lattice nanocavity hosts a strongly localized light field in a 0.048 λ3 mode volume with a quality factor exceeding 2.9 × 1011 (∼250 µs photon lifetime), which presents a record high figure of merit of light localization among all reported optical cavities. Based on the discovery, we have demonstrated silicon-based twisted lattice nanocavities with quality factor over 1 million. Our result provides a powerful platform to study light-matter interaction in extreme conditions for tests of fundamental physics and applications in nanolasing, ultrasensing, nonlinear optics, optomechanics and quantum-optical devices.

9.
Comput Struct Biotechnol J ; 16: 503-510, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30505403

RESUMO

Information of residue-residue contacts is essential for understanding the mechanism of protein folding, and has been successfully applied as special topological restraints to simplify the conformational sampling in de novo protein structure prediction. Prediction of protein residue contacts has experienced amazingly rapid progresses recently, with prediction accuracy approaching impressively high levels in the past two years. In this work, we introduce a second version of our residue contact predictor, DeepConPred2, which exhibits substantially improved performance and sufficiently reduced running time after model re-optimization and feature updates. When testing on the CASP12 free modeling targets, our program reaches at least the same level of prediction accuracy as the best contact predictors so far and provides information complementary to other state-of-the-art methods in contact-assisted folding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA