Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Hum Mol Genet ; 32(3): 462-472, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36001342

RESUMO

YWHAZ encodes an adapter protein 14-3-3ζ, which is involved in many signaling pathways that control cellular proliferation, migration and differentiation. It has not been definitely correlated to any phenotype in OMIM. To investigate the role of YWHAZ gene in intellectual disability and global developmental delay, we conducted whole-exon sequencing in all of the available members from a large three-generation family and we discovered that a novel variant of the YWHAZ gene was associated with intellectual disability and global developmental delay. This variant is a missense mutation of YWHAZ, p.Lys49Asn/c.147A > T, which was found in all affected members but not found in other unaffected members. We also conducted computational modeling and knockdown/knockin with Drosophila to confirm the role of the YWHAZ variant in intellectual disability. Computational modeling showed that the binding energy was increased in the mutated protein combining with the ligand indicating that the c147A > T variation was a loss-of-function variant. Cognitive defects and mushroom body morphological abnormalities were observed in YWHAZ c.147A > T knockin flies. The YWHAZ knockdown flies also manifested serious cognitive defects with hyperactivity behaviors, which is consistent with the clinical features. Our clinical and experimental results consistently suggested that YWHAZ was a novel intellectual disability pathogenic gene.


Assuntos
Deficiência Intelectual , Malformações do Sistema Nervoso , Criança , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Proteínas 14-3-3/genética , Mutação de Sentido Incorreto , Encéfalo , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/complicações
2.
J Vis Exp ; (200)2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37902337

RESUMO

Epilepsy is a neurological disorder characterized by recurrent seizures, partially correlated with genetic origin, affecting over 70 million individuals worldwide. Despite the clinical importance of epilepsy, the functional analysis of neural activity in the central nervous system is still to be developed. Recent advancements in imaging technology, in combination with stable expression of genetically encoded calcium indicators, such as GCaMP6, have revolutionized the study of epilepsy at both brain-wide and single-cell resolution levels. Drosophila melanogaster has emerged as a tool for investigating the molecular and cellular mechanisms underlying epilepsy due to its sophisticated molecular genetics and behavioral assays. In this study, we present a novel and efficient protocol for ex vivo calcium imaging in GCaMP6-expressing adult Drosophila to monitor epileptiform activities. The whole brain is prepared from cac, a well-known epilepsy gene, knockdown flies for calcium imaging with a confocal microscope to identify the neural activity as a follow-up to the bang-sensitive seizure-like behavior assay. The cac knockdown flies showed a higher rate of seizure-like behavior and abnormal calcium activities, including more large spikes and fewer small spikes than wild-type flies. The calcium activities were correlated to seizure-like behavior. This methodology serves as an efficient methodology in screening the pathogenic genes for epilepsy and exploring the potential mechanism of epilepsy at the cellular level.


Assuntos
Drosophila , Epilepsia , Animais , Humanos , Drosophila melanogaster/genética , Cálcio , Epilepsia/diagnóstico por imagem , Epilepsia/genética , Convulsões/patologia
3.
Front Endocrinol (Lausanne) ; 14: 1165825, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37529615

RESUMO

Introduction: It has been established that UBR4 encodes E3 ubiquitin ligase, which determines the specificity of substrate binding during protein ubiquitination and has been associated with various functions of the nervous system but not the reproductive system. Herein, we explored the role of UBR4 on fertility with a Drosophila model. Methods: Different Ubr4 knockdown flies were established using the UAS/GAL4 activating sequence system. Fertility, hatchability, and testis morphology were studied, and bioinformatics analyses were conducted. Our results indicated that UBR4 deficiency could induce male sterility and influent egg hatchability in Drosophila. Results: We found that Ubr4 deficiency affected the testis during morphological analysis. Proteomics analysis indicated 188 upregulated proteins and 175 downregulated proteins in the testis of Ubr4 knockdown flies. Gene Ontology analysis revealed significant upregulation of CG11598 and Sfp65A, and downregulation of Pelota in Ubr4 knockdown flies. These proteins were involved in the biometabolic or reproductive process in Drosophila. These regulated proteins are important in testis generation and sperm storage promotion. Bioinformatics analysis verified that UBR4 was low expressed in cryptorchidism patients, which further supported the important role of UBR4 in male fertility. Discussion: Overall, our findings suggest that UBR4 deficiency could promote male infertility and may be involved in the protein modification of UBR4 by upregulating Sfp65A and CG11598, whereas downregulating Pelota protein expression.


Assuntos
Proteínas de Drosophila , Infertilidade Masculina , Humanos , Animais , Masculino , Drosophila , Testículo/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Sêmen/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Ubiquitina-Proteína Ligases/genética
4.
J Mol Neurosci ; 72(8): 1706-1714, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35668313

RESUMO

LRP1, the low-density lipoprotein receptor 1, would be a novel candidate gene of epilepsy according to our bioinformatic results and the animal study. In this study, we explored the role of LRP1 in epilepsy and whether beta-hydroxybutyrate, the principal ketone body of the ketogenic diet, can treat epilepsy caused by LRP1 deficiency in drosophila. UAS/GAL4 system was used to establish different genotype models. Flies were given standard, high-sucrose, and ketone body food randomly. The bang-sensitive test was performed on flies and seizure-like behavior was assessed. In morphologic experiments, we found that LRP1 deficiency caused partial loss of the ellipsoidal body and partial destruction of the fan-shaped body. Whole-body and glia LRP1 defect flies had a higher seizure rate compared to the control group. Ketone body decreased the seizure rate in behavior test in all LRP1 defect flies, compared to standard and high sucrose diet. Overexpression of glutamate transporter gene Eaat1 could mimic the ketone body effect on LRP1 deficiency flies. This study demonstrated that LRP1 defect globally or in glial cells or neurons could induce epilepsy in drosophila. The ketone body efficaciously rescued epilepsy caused by LRP1 knockdown. The results support screening for LRP1 mutations as discriminating conduct for individuals who require clinical attention and further clarify the mechanism of the ketogenic diet in epilepsy, which could help epilepsy patients make a precise treatment case by case.


Assuntos
Drosophila , Epilepsia , Animais , Ácido Glutâmico , Corpos Cetônicos/uso terapêutico , Convulsões/tratamento farmacológico , Convulsões/genética , Sacarose
5.
Invert Neurosci ; 20(3): 11, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32766952

RESUMO

Impairment of the dopamine system is the main cause of Parkinson disease (PD). PTEN-induced kinase 1 (PINK1) is possibly involved in pathogenesis of PD. However, its role in dopaminergic neurons has not been fully established yet. In the present investigation, we have used the PINK1 knockout Drosophila model to explore the role of PINK1 in dopaminergic neurons. Electrophysiological and behavioral tests indicated that PINK1 elimination enhances the neural transmission from the presynaptic part of dopaminergic neurons in the protocerebral posterior medial region 3 (PPM3) to PPM3 neurons (which are homologous to those in the substantia nigra in humans). Firing properties of the action potential in PPM3 neurons were also altered in the PINK1 knockout genotypes. Abnormal motor ability was also observed in these PINK1 knockout animals. Our results indicate that knockout of PINK1 could alter both the input and output properties of PPM3 neurons.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Proteínas de Drosophila/genética , Atividade Motora/genética , Proteínas Serina-Treonina Quinases/genética , Substância Negra/metabolismo , Potenciais de Ação/genética , Animais , Animais Geneticamente Modificados , Drosophila , Proteínas de Drosophila/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transmissão Sináptica/fisiologia
7.
Oncol Lett ; 13(6): 4818-4824, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28599483

RESUMO

The present study aimed to investigate the effect of the negative costimulatory molecule programmed death-ligand 1 (PD-L1) on immunotherapy with OK-432, following transurethral resection of bladder tumors in non-muscle invasive bladder cancer (NMIBC), and to elucidate the underlying mechanism. PD-L1 was detected by immunohistochemical staining in tumor specimens from 55 cases of NMIBC following postoperative immunotherapy with OK-432. The PD-L1 mRNA and protein expression levels were measured in the bladder cancer T24 cell line and the human uroepithelial SV-HUC-1 cell line, following treatment with interleukin (IL)-2, interferon (IFN)-α and IFN-γ, by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis, respectively. PD-L1 was widely expressed in the NMIBC tumors, with 56.4% (31/55) of specimens exhibiting positive staining. When compared with PD-L1-negative patients, PD-L1-positive patients exhibited significantly increased recurrence [48.4% (15/31) vs. 16.7% (4/24)] and progression [16.1% (5/31) vs. 4.2% (1/24)] rates (P<0.05). RT-qPCR and western blotting demonstrated that cytokines IL-2, IFN-α and IFN-γ markedly upregulated PD-L1 mRNA expression rates and protein levels in bladder cancer T24 cells (P<0.05), but had no significant effect in non-tumor SV-HUC-1 cells. In conclusion, PD-L1 expression was negatively-associated with the efficacy of OK-432 intravesical immunotherapy in patients with NMIBC. The results indicated that the involved mechanism occurred via upregulation of PD-L1 by immune cytokines, which in turn suppressed the antitumor effectiveness of the immune system, thereby promoting tumor recurrence and progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA