Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 84(12): 2255-2271.e9, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38851186

RESUMO

The mechanisms and timescales controlling de novo establishment of chromatin-mediated transcriptional silencing by Polycomb repressive complex 2 (PRC2) are unclear. Here, we investigate PRC2 silencing at Arabidopsis FLOWERING LOCUS C (FLC), known to involve co-transcriptional RNA processing, histone demethylation activity, and PRC2 function, but so far not mechanistically connected. We develop and test a computational model describing proximal polyadenylation/termination mediated by the RNA-binding protein FCA that induces H3K4me1 removal by the histone demethylase FLD. H3K4me1 removal feeds back to reduce RNA polymerase II (RNA Pol II) processivity and thus enhance early termination, thereby repressing productive transcription. The model predicts that this transcription-coupled repression controls the level of transcriptional antagonism to PRC2 action. Thus, the effectiveness of this repression dictates the timescale for establishment of PRC2/H3K27me3 silencing. We experimentally validate these mechanistic model predictions, revealing that co-transcriptional processing sets the level of productive transcription at the locus, which then determines the rate of the ON-to-OFF switch to PRC2 silencing.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Histonas , Proteínas de Domínio MADS , Complexo Repressor Polycomb 2 , RNA Polimerase II , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Histonas/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/genética , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Transcrição Gênica , Poliadenilação , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Terminação da Transcrição Genética , Cromatina/metabolismo , Cromatina/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética
2.
Mol Cell ; 84(12): 2272-2286.e7, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38851185

RESUMO

The interconnections between co-transcriptional regulation, chromatin environment, and transcriptional output remain poorly understood. Here, we investigate the mechanism underlying RNA 3' processing-mediated Polycomb silencing of Arabidopsis FLOWERING LOCUS C (FLC). We show a requirement for ANTHESIS PROMOTING FACTOR 1 (APRF1), a homolog of yeast Swd2 and human WDR82, known to regulate RNA polymerase II (RNA Pol II) during transcription termination. APRF1 interacts with TYPE ONE SERINE/THREONINE PROTEIN PHOSPHATASE 4 (TOPP4) (yeast Glc7/human PP1) and LUMINIDEPENDENS (LD), the latter showing structural features found in Ref2/PNUTS, all components of the yeast and human phosphatase module of the CPF 3' end-processing machinery. LD has been shown to co-associate in vivo with the histone H3 K4 demethylase FLOWERING LOCUS D (FLD). This work shows how the APRF1/LD-mediated polyadenylation/termination process influences subsequent rounds of transcription by changing the local chromatin environment at FLC.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cromatina , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Proteínas de Domínio MADS , RNA Polimerase II , Terminação da Transcrição Genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cromatina/metabolismo , Cromatina/genética , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Histonas/metabolismo , Histonas/genética , Histona Desacetilases
3.
Plant Physiol ; 195(1): 190-212, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38417841

RESUMO

Plant species have evolved different requirements for environmental/endogenous cues to induce flowering. Originally, these varying requirements were thought to reflect the action of different molecular mechanisms. Thinking changed when genetic and molecular analysis in Arabidopsis thaliana revealed that a network of environmental and endogenous signaling input pathways converge to regulate a common set of "floral pathway integrators." Variation in the predominance of the different input pathways within a network can generate the diversity of requirements observed in different species. Many genes identified by flowering time mutants were found to encode general developmental and gene regulators, with their targets having a specific flowering function. Studies of natural variation in flowering were more successful at identifying genes acting as nodes in the network central to adaptation and domestication. Attention has now turned to mechanistic dissection of flowering time gene function and how that has changed during adaptation. This will inform breeding strategies for climate-proof crops and help define which genes act as critical flowering nodes in many other species.


Assuntos
Arabidopsis , Flores , Regulação da Expressão Gênica de Plantas , Flores/genética , Flores/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Transdução de Sinais/genética , Adaptação Fisiológica/genética , Genes de Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Tempo
4.
Nat Plants ; 7(1): 34-41, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33398155

RESUMO

Although plants are able to withstand a range of environmental conditions, spikes in ambient temperature can impact plant fertility causing reductions in seed yield and notable economic losses1,2. Therefore, understanding the precise molecular mechanisms that underpin plant fertility under environmental constraints is critical to safeguarding future food production3. Here, we identified two Argonaute-like proteins whose activities are required to sustain male fertility in maize plants under high temperatures. We found that MALE-ASSOCIATED ARGONAUTE-1 and -2 associate with temperature-induced phased secondary small RNAs in pre-meiotic anthers and are essential to controlling the activity of retrotransposons in male meiocyte initials. Biochemical and structural analyses revealed how male-associated Argonaute activity and its interaction with retrotransposon RNA targets is modulated through the dynamic phosphorylation of a set of highly conserved, surface-located serine residues. Our results demonstrate that an Argonaute-dependent, RNA-guided surveillance mechanism is critical in plants to sustain male fertility under environmentally constrained conditions, by controlling the mutagenic activity of transposons in male germ cells.


Assuntos
Elementos de DNA Transponíveis/genética , Zea mays/genética , Produção Agrícola , Elementos de DNA Transponíveis/fisiologia , Fertilidade , Resposta ao Choque Térmico , Plantas Geneticamente Modificadas , Pólen/crescimento & desenvolvimento , Pólen/fisiologia , Proteômica , Zea mays/crescimento & desenvolvimento , Zea mays/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA