Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2016): 20232531, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38320610

RESUMO

The response of the gut microbiota to changes in the host environment can be influenced by both the host's past and present habitats. To quantify their contributions for two different life stages, we studied the gut microbiota of wild bank voles (Clethrionomys glareolus) by performing a reciprocal transfer experiment with adults and their newborn offspring between urban and rural forests in a boreal ecosystem. Here, we show that the post-transfer gut microbiota in adults did not shift to resemble the post-transfer gut microbiota of animals 'native' to the present habitat. Instead, their gut microbiota appear to be structured by both their past and present habitat, with some features of the adult gut microbiota still determined by the past living environment (e.g. alpha diversity, compositional turnover). By contrast, we did not find evidence of the maternal past habitat (maternal effects) affecting the post-transfer gut microbiota of the juvenile offspring, and only a weak effect of the present habitat. Our results show that both the contemporary living environment and the past environment of the host organism can structure the gut microbiota communities, especially in adult individuals. These data are relevant for decision-making in the field of conservation and wildlife translocations.


Assuntos
Ecossistema , Microbioma Gastrointestinal , Animais , Roedores , Animais Selvagens , Florestas , Arvicolinae
2.
Mol Ecol ; 32(2): 504-517, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36318600

RESUMO

Anthropogenic changes to land use drive concomitant changes in biodiversity, including that of the soil microbiota. However, it is not clear how increasing intensity of human disturbance is reflected in the soil microbial communities. To address this issue, we used amplicon sequencing to quantify the microbiota (bacteria and fungi) in the soil of forests (n = 312) experiencing four different land uses, national parks (set aside for nature conservation), managed (for forestry purposes), suburban (on the border of an urban area) and urban (fully within a town or city), which broadly represent a gradient of anthropogenic disturbance. Alpha diversity of bacteria and fungi increased with increasing levels of anthropogenic disturbance, and was thus highest in urban forest soils and lowest in the national parks. The forest soil microbial communities were structured according to the level of anthropogenic disturbance, with a clear urban signature evident in both bacteria and fungi. Despite notable differences in community composition, there was little change in the predicted functional traits of urban bacteria. By contrast, urban soils exhibited a marked loss of ectomycorrhizal fungi. Soil pH was positively correlated with the level of disturbance, and thus was the strongest predictor of variation in alpha and beta diversity of forest soil communities, indicating a role of soil alkalinity in structuring urban soil microbial communities. Hence, our study shows how the properties of urban forest soils promote an increase in microbial diversity and a change in forest soil microbiota composition.


Assuntos
Micorrizas , Solo , Humanos , Solo/química , Florestas , Fungos/genética , Bactérias/genética , Biodiversidade , Microbiologia do Solo
3.
J Anim Ecol ; 92(4): 826-837, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36504351

RESUMO

The effects of systemic pathogens on gut microbiota of wild animals are poorly understood. Furthermore, coinfections are the norm in nature, yet most studies of pathogen-microbiota interactions focus on effects of single pathogen infections on gut microbiota. We examined the effects of four systemic pathogens (bacteria Anaplasma phagocytophilum and Borrelia burgdorferi sensu lato, apicomplexan protozoa Babesia microti and Puumala orthohantavirus) and coinfections among them on the (bacterial) gut microbiota of wild bank voles Myodes glareolus. We hypothesized that: (1) the effects of coinfection on gut microbiota generally differ from those of a single pathogen infection, (2) systemic pathogens have individual (i.e. distinct) associations with gut microbiota, which are modified by coinfection and (3) the effects of coinfection (compared with those of single infection) are idiosyncratic (i.e. pathogen-specific). The gut microbiota of coinfected bank voles differed from that of single pathogen infected individuals, although, as predicted, the effects of coinfections were unique for each pathogen. After accounting for coinfections, only Puumala orthohantavirus was associated with higher α-diversity; however, all pathogens affected gut microbiota ß-diversity in a pathogen-specific way, affecting both rare and abundant gut bacteria. Our results showed that the effects of systemic pathogens on host's gut microbiota vary depending on the pathogen species, resulting in idiosyncratic signatures of coinfection. Furthermore, our results emphasize that neglecting the impact of coinfections can mask patterns of pathogen-microbiota associations.


Assuntos
Borrelia burgdorferi , Coinfecção , Microbioma Gastrointestinal , Ixodes , Doenças dos Roedores , Animais , Coinfecção/veterinária , Roedores , Arvicolinae/microbiologia , Arvicolinae/parasitologia , Ixodes/microbiologia , Doenças dos Roedores/microbiologia
4.
Proc Biol Sci ; 289(1970): 20212510, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35259986

RESUMO

The diet of an individual is a result of the availability of dietary items and the individual's foraging skills and preferences. Behavioural differences may thus influence diet variation, but the evolvability of diet choice through behavioural evolution has not been studied. We used experimental evolution combined with a field enclosure experiment to test whether behavioural selection leads to dietary divergence. We analysed the individual dietary niche via stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) in the hair of an omnivorous mammal, the bank vole, from four lines selected for predatory behaviour and four unselected control lines. Predatory voles had higher hair δ15N values than control voles, supporting our hypothesis that predatory voles would consume a higher trophic level diet (more animal versus plant foods). This difference was significant in the early but not the late summer season. The δ13C values also indicated a seasonal change in the consumed plant matter and a difference in food sources among selection lines in the early summer. These results imply that environmental factors interact with evolved behavioural tendencies to determine dietary niche heterogeneity. Behavioural selection thus has potential to contribute to the evolution of diet choice and ultimately the species' ecological niche breadth.


Assuntos
Dieta , Comportamento Predatório , Animais , Isótopos de Carbono/análise , Alimentos , Mamíferos , Isótopos de Nitrogênio/análise
5.
J Anim Ecol ; 91(7): 1535-1545, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35694772

RESUMO

Evidence that exposure to environmental pollutants can alter the gut microbiota composition of wildlife includes studies of rodents exposed to radionuclides. Antwis et al. (2021) used amplicon sequencing to characterise the gut microbiota of four species of rodent (Myodes glareolus, Apodemus agrarius, A. flavicollis and A. sylvaticus) inhabiting the Chernobyl Exclusion Zone (CEZ) to examine possible changes in gut bacteria (microbiota) and gut fungi (mycobiota) associated with exposure to radionuclides and whether the sample type (from caecum or faeces) affected the analysis. The conclusions derived from the analyses of gut mycobiota are based on data that represent a mixture of ingested fungi (e.g. edible macrofungi, polypores, lichens and ectomycorrhizae) and gut mycobiota (e.g. microfungi and yeasts), which mask the patterns of inter- and intraspecific variation in the authentic gut mycobiota. Implying that 'faecal samples are not an accurate indicator of gut composition' creates an unnecessary controversy about faecal sampling because the comparison of samples from the caecum and faeces confounds many other possible drivers (including different animals from different locations, sampled in different years) of variation in gut microbiota. It is relevant also that Antwis et al.'s (2021) data lack statistical power to detect an effect of exposure to radionuclides on the gut microbiota because (1) all of their samples of Apodemus mice had experienced a medium or high total absorbed dose rate and (2) they did not collect samples of bank voles (M. glareolus) from replicate contaminated and uncontaminated locations. Discussion of Antwis et al.'s (2021) analysis, especially the claims presented in the Abstract, is important to prevent controversy about the outcome of research on the biological impacts of wildlife inhabiting the CEZ.


Assuntos
Acidente Nuclear de Chernobyl , Microbioma Gastrointestinal , Micobioma , Exposição à Radiação , Animais , Animais Selvagens , Arvicolinae , Bactérias , Fungos , Mamíferos , Camundongos , Murinae , Radioisótopos
6.
Oecologia ; 200(3-4): 471-478, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36242620

RESUMO

In seasonal environments, appropriate adaptations are crucial for organisms to maximize their fitness. For instance, in many species, the immune function has been noticed to decrease during winter, which is assumed to be an adaptation to the season's limited food availability. Consequences of an infection on the health and survival of the host organism could thus be more severe in winter than in summer. Here, we experimentally investigated the effect of a zoonotic, endemic pathogen, Borrelia afzelii infection on the survival and body condition in its host, the bank vole (Myodes glareolus), during late autumn-early winter under semi-natural field conditions in 11 large outdoor enclosures. To test the interaction of Borrelia infection and energetic condition, four populations received supplementary nutrition, while remaining seven populations exploited only natural food sources. Supplementary food during winter increased the body mass independent of the infection status, however, Borrelia afzelii infection did not cause severe increase in the host mortality or affect the host body condition in the late autumn-early winter. While our study suggests that no severe effects are caused by B. afzelii infection on bank vole, further studies are warranted to identify any potentially smaller effects the pathogen may cause on the host fitness over the period of whole winter.


Assuntos
Infecções por Borrelia , Grupo Borrelia Burgdorferi , Ixodes , Doença de Lyme , Animais , Doença de Lyme/veterinária , Doença de Lyme/epidemiologia , Estações do Ano , Roedores , Arvicolinae
7.
Mol Ecol ; 30(14): 3485-3499, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33955637

RESUMO

Species identity is thought to dominate over environment in shaping wild rodent gut microbiota, but it remains unknown whether the responses of host gut microbiota to shared anthropogenic habitat impacts are species-specific or if the general gut microbiota response is similar across host species. Here, we compare the influence of exposure to radionuclide contamination on the gut microbiota of four wild mouse species: Apodemus flavicollis, A. sylvaticus, A. speciosus and A. argenteus. Building on the evidence that radiation impacts bank vole (Myodes glareolus) gut microbiota, we hypothesized that radiation exposure has a general impact on rodent gut microbiota. Because we sampled (n = 288) two species pairs of Apodemus mice that occur in sympatry in habitats affected by the Chernobyl and Fukushima nuclear accidents, these comparisons provide an opportunity for a general assessment of the effects of exposure to environmental contamination (radionuclides) on gut microbiota across host phylogeny and geographical areas. In general agreement with our hypothesis, analyses of bacterial 16S rRNA gene sequences revealed that radiation exposure alters the gut microbiota composition and structure in three of the four species of Apodemus mice. The notable lack of an association between the gut microbiota and soil radionuclide contamination in one mouse species from Fukushima (A. argenteus) probably reflects host "radiation escape" through its unique tree-dwelling lifestyle. The finding that host ecology can modulate effects of radiation exposure offers an interesting counterpoint for future analyses into effects of radiation or any other toxic exposure on host and its associated microbiota. Our data show that exposure to radionuclide contamination is linked to comparable gut microbiota responses across multiple species of rodents.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Arvicolinae , Camundongos , Murinae , RNA Ribossômico 16S/genética
8.
BMC Evol Biol ; 20(1): 26, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054437

RESUMO

BACKGROUND: Climatic variation and geologic change both play significant roles in shaping species distributions, thus affecting their evolutionary history. In Sahara-Sahel, climatic oscillations shifted the desert extent during the Pliocene-Pleistocene interval, triggering the diversification of several species. Here, we investigated how these biogeographical and ecological events have shaped patterns of genetic diversity and divergence in African Jerboas, desert specialist rodents. We focused on two sister and cryptic species, Jaculus jaculus and J. hirtipes, where we (1) evaluated their genetic differentiation, (2) reconstructed their evolutionary and demographic history; (3) tested the level of gene flow between them, and (4) assessed their ecological niche divergence. RESULTS: The analyses based on 231 individuals sampled throughout North Africa, 8 sequence fragments (one mitochondrial and seven single copy nuclear DNA, including two candidate genes for fur coloration: MC1R and Agouti), 6 microsatellite markers and ecological modelling revealed: (1) two distinct genetic lineages with overlapping distributions, in agreement with their classification as different species, J. jaculus and J. hirtipes, with (2) low levels of gene flow and strong species divergence, (3) high haplotypic diversity without evident geographic structure within species, and (4) a low level of large-scale ecological divergence between the two taxa, suggesting species micro-habitat specialization. CONCLUSIONS: Overall, our results suggest a speciation event that occurred during the Pliocene-Pleistocene transition. The contemporary distribution of genetic variation suggests ongoing population expansions. Despite the largely overlapping distributions at a macrogeographic scale, our genetic results suggest that the two species remain reproductively isolated, as only negligible levels of gene flow were observed. The overlapping ecological preferences at a macro-geographic scale and the ecological divergence at the micro-habitat scale suggest that local adaptation may have played a crucial role in the speciation process of these species.


Assuntos
Especiação Genética , Roedores/classificação , Roedores/genética , África do Norte , Animais , Evolução Biológica , DNA Mitocondrial/genética , Ecologia , Ecossistema , Meio Ambiente , Variação Genética , Haplótipos , Filogenia , Filogeografia
9.
J Anim Ecol ; 89(11): 2617-2630, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32939769

RESUMO

Gut microbiota play an important role in host health. Yet, the drivers and patterns of microbiota imbalance (dysbiosis) in wild animals remain largely unexplored. One hypothesised outcome of stress on animal microbiomes is a destabilised microbial community that is characterised by an increase in inter-individual differences compared with microbiomes of healthy animals, which are expected to be (a) temporally stable and (b) relatively similar among individuals. This set of predictions for response of microbiomes to stressors is known as the Anna Karenina principle (AKP) for animal microbiomes. We examine the AKP in a wild mammal inhabiting disturbed environments by conducting a capture-mark-recapture survey of bank voles Myodes glareolus in areas that contrast in levels of radionuclide contamination (Chernobyl, Ukraine). Counter to key predictions of the AKP, bank voles that are not exposed to radionuclides harbour variable (increased inter-individual differences) and temporally dynamic gut microbiota communities, presumably tracking the natural spatio-temporal variation in resources. Conversely, bank voles exposed to radionuclides host more similar gut microbiota communities that are temporally stable, potentially due to a dysbiosis or selection (on host or bacteria) imposed by chronic radiation exposure. The implication of these data is that environmental stress (radiation exposure) can constrain the natural spatial and temporal variation of wild animal gut microbiota.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Animais Selvagens , Arvicolinae , Bactérias
10.
Proc Natl Acad Sci U S A ; 114(14): 3690-3695, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28325880

RESUMO

Most variation in behavior has a genetic basis, but the processes determining the level of diversity at behavioral loci are largely unknown for natural populations. Expression of arginine vasopressin receptor 1a (Avpr1a) and oxytocin receptor (Oxtr) in specific regions of the brain regulates diverse social and reproductive behaviors in mammals, including humans. That these genes have important fitness consequences and that natural populations contain extensive diversity at these loci implies the action of balancing selection. In Myodes glareolus, Avpr1a and Oxtr each contain a polymorphic microsatellite locus located in their 5' regulatory region (the regulatory region-associated microsatellite, RRAM) that likely regulates gene expression. To test the hypothesis that balancing selection maintains diversity at behavioral loci, we released artificially bred females and males with different RRAM allele lengths into field enclosures that differed in population density. The length of Avpr1a and Oxtr RRAMs was associated with reproductive success, but population density and the sex interacted to determine the optimal genotype. In general, longer Avpr1a RRAMs were more beneficial for males, and shorter RRAMs were more beneficial for females; the opposite was true for Oxtr RRAMs. Moreover, Avpr1a RRAM allele length is correlated with the reproductive success of the sexes during different phases of reproduction; for males, RRAM length correlated with the numbers of newborn offspring, but for females selection was evident on the number of weaned offspring. This report of density-dependence and sexual antagonism acting on loci within the arginine vasopressin-oxytocin pathway explains how genetic diversity at Avpr1a and Oxtr could be maintained in natural populations.


Assuntos
Arvicolinae/fisiologia , Repetições de Microssatélites , Receptores de Ocitocina/genética , Receptores de Vasopressinas/genética , Animais , Arvicolinae/genética , Feminino , Regulação da Expressão Gênica , Aptidão Genética , Masculino , Sequências Reguladoras de Ácido Nucleico , Reprodução
11.
Mol Ecol ; 28(20): 4620-4635, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31498518

RESUMO

Wildlife inhabiting environments contaminated by radionuclides face putative detrimental effects of exposure to ionizing radiation, with biomarkers such as an increase in DNA damage and/or oxidative stress commonly associated with radiation exposure. To examine the effects of exposure to radiation on gene expression in wildlife, we conducted a de novo RNA sequencing study of liver and spleen tissues from a rodent, the bank vole Myodes glareolus. Bank voles were collected from the Chernobyl Exclusion Zone (CEZ), where animals were exposed to elevated levels of radionuclides, and from uncontaminated areas near Kyiv, Ukraine. Counter to expectations, we did not observe a strong DNA damage response in animals exposed to radionuclides, although some signs of oxidative stress were identified. Rather, exposure to environmental radionuclides was associated with upregulation of genes involved in lipid metabolism and fatty acid oxidation in the livers - an apparent shift in energy metabolism. Moreover, using stable isotope analysis, we identified that fur from bank voles inhabiting the CEZ had enriched isotope values of nitrogen: such an increase is consistent with increased fatty acid metabolism, but also could arise from a difference in diet or habitat between the CEZ and elsewhere. In livers and spleens, voles inhabiting the CEZ were characterized by immunosuppression, such as impaired antigen processing, and activation of leucocytes involved in inflammatory responses. In conclusion, exposure to low dose environmental radiation impacts pathways associated with immunity and lipid metabolism, potentially as a stress-induced coping mechanism.


Assuntos
Acidente Nuclear de Chernobyl , Metabolismo dos Lipídeos/fisiologia , Fígado/patologia , Exposição à Radiação/efeitos adversos , Baço/patologia , Animais , Arvicolinae , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Ácidos Graxos/metabolismo , Sistema Imunitário/efeitos da radiação , Metabolismo dos Lipídeos/genética , Fígado/imunologia , Mutagênicos/efeitos adversos , Oxirredução/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Radiação Ionizante , Radioisótopos/efeitos adversos , Baço/imunologia , Ucrânia
12.
J Evol Biol ; 32(10): 1141-1151, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31390473

RESUMO

Intergenerational fitness effects on offspring due to the early life of the parent are well studied from the standpoint of the maternal environment, but intergenerational effects owing to the paternal early life environment are often overlooked. Nonetheless, recent laboratory studies in mammals and ecologically relevant studies in invertebrates predict that paternal effects can have a major impact on the offspring's phenotype. These nongenetic, environment-dependent paternal effects provide a mechanism for fathers to transmit environmental information to their offspring and could allow rapid adaptation. We used the bank vole Myodes glareolus, a wild rodent species with no paternal care, to test the hypothesis that a high population density environment in the early life of fathers can affect traits associated with offspring fitness. We show that the protein content in the diet and/or social environment experienced during the father's early life (prenatal and weaning) influence the phenotype and survival of his offspring and may indicate adaptation to density-dependent costs. Furthermore, we show that experiencing multiple environmental factors during the paternal early life can lead to a different outcome on the offspring phenotype than stimulated by experience of a single environmental factor, highlighting the need to study developmental experiences in tandem rather than independent of each other.


Assuntos
Arvicolinae/genética , Adaptação Fisiológica , Animais , Epigênese Genética , Pai , Feminino , Aptidão Genética , Longevidade , Masculino , Preferência de Acasalamento Animal , Estações do Ano
13.
J Anim Ecol ; 88(9): 1355-1365, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31162628

RESUMO

The early life environment can have profound, long-lasting effects on an individual's fitness. For example, early life quality might (a) positively associate with fitness (a silver spoon effect), (b) stimulate a predictive adaptive response (by adjusting the phenotype to the quality of the environment to maximize fitness) or (c) be obscured by subsequent plasticity. Potentially, the effects of the early life environment can persist beyond one generation, though the intergenerational plasticity on fitness traits of a subsequent generation is unclear. To study both intra- and intergenerational effects of the early life environment, we exposed a first generation of bank voles to two early life stimuli (variation in food and social environment) in a controlled environment. To assess possible intra-generational effects, the reproductive success of female individuals was investigated by placing them in large outdoor enclosures in two different, ecologically relevant environments (population densities). Resulting offspring were raised in the same population densities where they were conceived and their growth was recorded. When adult, half of the offspring were transferred to opposite population densities to evaluate their winter survival, a crucial fitness trait for bank voles. Our setup allowed us to assess: (a) do early life population density cues elicit an intra-generational adaptive response, that is a higher reproductive success when the density matches the early life cues and (b) can early life stimuli of one generation elicit an intergenerational adaptive response in their offspring, that is a higher growth and winter survival when the density matches the early life cues of their mother. Our results show that the early life environment directly affects the phenotype and reproductive success of the focal generation, but adaptive responses are only evident in the offspring. Growth of the offspring is maintained only when the environment matches their mother's early life environment. Furthermore, winter survival of offspring also tended to be higher in high population densities if their mothers experienced an competitive early life. These results show that the early life environment can contribute to maintain high fitness in challenging environments, but not necessarily in the generation experiencing the early life cues.


Assuntos
Reprodução , Roedores , Animais , Arvicolinae , Feminino , Densidade Demográfica , Estações do Ano
14.
BMC Cell Biol ; 19(1): 17, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30157751

RESUMO

BACKGROUND: Elevated levels of environmental ionizing radiation can be a selective pressure for wildlife by producing reactive oxygen species and DNA damage. However, the underlying molecular mechanisms that are affected are not known. RESULTS: We isolated skin fibroblasts from bank voles (Myodes glareolus) inhabiting the Chernobyl nuclear power plant accident site where background radiation levels are about 100 times greater than in uncontaminated areas. After a 10 Gy dose of gamma radiation fibroblasts from Chernobyl animals recovered faster than fibroblasts isolated from bank voles living in uncontaminated control area. The Chernobyl fibroblasts were able to sustain significantly higher doses of an oxidant and they had, on average, a higher total antioxidant capacity than the control fibroblasts. Furthermore, the Chernobyl fibroblasts were also significantly more resistant than the control fibroblasts to continuous exposure to three DNA damaging drugs. After drug treatment transcription of p53-target gene pro-apoptotic Bax was higher in the control than in the Chernobyl fibroblasts. CONCLUSION: Fibroblasts isolated from bank voles inhabiting Chernobyl nuclear power plant accident site show elevated antioxidant levels, lower sensitivity to apoptosis, and increased resistance against oxidative and DNA stresses. These cellular qualities may help bank voles inhabiting Chernobyl to cope with environmental radioactivity.


Assuntos
Arvicolinae/metabolismo , Acidente Nuclear de Chernobyl , DNA/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Pontos de Checagem do Ciclo Celular , Morte Celular , Linhagem Celular , Sobrevivência Celular , Dano ao DNA , Fase G2 , Raios gama , Masculino , Oxidantes/metabolismo , Proteína Supressora de Tumor p53/metabolismo
15.
Proc Biol Sci ; 285(1884)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068677

RESUMO

The impact of a pathogen on the fitness and behaviour of its natural host depends upon the host-parasite relationship in a given set of environmental conditions. Here, we experimentally investigated the effects of Borrelia afzelii, one of the aetiological agents of Lyme disease in humans, on the fitness of its natural rodent host, the bank vole (Myodes glareolus), in semi-natural conditions with two contrasting host population densities. Our results show that B. afzelii can modify the reproductive success and spacing behaviour of its rodent host, whereas host survival was not affected. Infection impaired the breeding probability of large bank voles. Reproduction was hastened in infected females without alteration of the offspring size at birth. At low density, infected males produced fewer offspring, fertilized fewer females and had lower mobility than uninfected individuals. Meanwhile, the infection did not affect the proportion of offspring produced or the proportion of mating partner in female bank voles. Our study is the first to show that B. afzelii infection alters the reproductive success of the natural host. The effects observed could reflect the sickness behaviour due to the infection or they could be a consequence of a manipulation of the host behaviour by the bacteria.


Assuntos
Arvicolinae/microbiologia , Grupo Borrelia Burgdorferi/fisiologia , Reprodução/fisiologia , Doenças dos Roedores/microbiologia , Animais , Arvicolinae/fisiologia , Grupo Borrelia Burgdorferi/patogenicidade , Feminino , Interações Hospedeiro-Patógeno/fisiologia , Doença de Lyme/microbiologia , Masculino , Densidade Demográfica , Comportamento Sexual Animal/fisiologia
16.
Proc Biol Sci ; 284(1869)2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29237850

RESUMO

The loci arginine vasopressin receptor 1a (avpr1a) and oxytocin receptor (oxtr) have evolutionarily conserved roles in vertebrate social and sexual behaviour. Allelic variation at a microsatellite locus in the 5' regulatory region of these genes is associated with fitness in the bank vole Myodes glareolus Given the low frequency of long and short alleles at these microsatellite loci in wild bank voles, we used breeding trials to determine whether selection acts against long and short alleles. Female bank voles with intermediate length avpr1a alleles had the highest probability of breeding, while male voles whose avpr1a alleles were very different in length had reduced probability of breeding. Moreover, there was a significant interaction between male and female oxtr genotypes, where potential breeding pairs with dissimilar length alleles had reduced probability of breeding. These data show how genetic variation at microsatellite loci associated with avpr1a and oxtr is associated with fitness, and highlight complex patterns of selection at these loci. More widely, these data show how stabilizing selection might act on allele length frequency distributions at gene-associated microsatellite loci.


Assuntos
Arvicolinae/genética , Frequência do Gene , Repetições de Microssatélites/genética , Receptores de Ocitocina/genética , Receptores de Vasopressinas/genética , Seleção Genética , Alelos , Animais , Arvicolinae/metabolismo , Feminino , Variação Genética , Masculino , Receptores de Ocitocina/metabolismo , Receptores de Vasopressinas/metabolismo
17.
Biol Lett ; 12(9)2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27677814

RESUMO

Trade-offs in the allocation of finite-energy resources among immunological defences and other physiological processes are believed to influence infection risk and disease severity in food-limited wildlife populations. However, this prediction has received little experimental investigation. Here we test the hypothesis that food limitation impairs the ability of wild field voles (Microtus agrestis) to mount an immune response against parasite infections. We conducted a replicated experiment on vole populations maintained in large outdoor enclosures during boreal winter, using food supplementation and anthelmintic treatment of intestinal nematodes. Innate immune responses against intestinal parasite infections were compared between food-supplemented and non-supplemented voles. Voles with high food availability mounted stronger immune responses against intestinal nematode infections than food-limited voles. No food effects were seen in immune responses to intracellular coccidian parasites, possibly owing to their ability to avoid activation of innate immune pathways. Our findings demonstrate that food availability constrains vole immune responses against nematode infections, and support the concept that spatio-temporal heterogeneity in food availability creates variation in infectious disease susceptibility.

18.
Proc Biol Sci ; 282(1816): 20151939, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26446813

RESUMO

While pathogens are often assumed to limit the growth of wildlife populations, experimental evidence for their effects is rare. A lack of food resources has been suggested to enhance the negative effects of pathogen infection on host populations, but this theory has received little investigation. We conducted a replicated two-factor enclosure experiment, with introduction of the bacterium Bordetella bronchiseptica and food supplementation, to evaluate the individual and interactive effects of pathogen infection and food availability on vole populations during a boreal winter. We show that prior to bacteria introduction, vole populations were limited by food availability. Bordetella bronchiseptica introduction then reduced population growth and abundance, but contrary to predictions, primarily in food supplemented populations. Infection prevalence and pathological changes in vole lungs were most common in food supplemented populations, and are likely to have resulted from increased congregation and bacteria transmission around feeding stations. Bordetella bronchiseptica-infected lungs often showed protozoan co-infection (consistent with Hepatozoon erhardovae), together with more severe inflammatory changes. Using a multidisciplinary approach, this study demonstrates a complex picture of interactions and underlying mechanisms, leading to population-level effects. Our results highlight the potential for food provisioning to markedly influence disease processes in wildlife mammal populations.


Assuntos
Arvicolinae , Infecções por Bordetella/veterinária , Bordetella bronchiseptica/fisiologia , Dieta/veterinária , Suplementos Nutricionais/análise , Doenças dos Roedores/microbiologia , Animais , Infecções por Bordetella/microbiologia , Feminino , Finlândia , Masculino , Dinâmica Populacional , Crescimento Demográfico , Distribuição Aleatória , Estações do Ano
19.
J Anim Ecol ; 84(5): 1264-72, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25965086

RESUMO

1. Pathogens often cause detrimental effects to their hosts and, consequently, may influence host population dynamics that may, in turn, feed back to pathogen transmission dynamics. Understanding fitness effects of pathogens upon animal host populations can help to predict the risks that zoonotic pathogens pose to humans. 2. Here we determine whether chronic infection by Puumala hantavirus (PUUV) affects important fitness-related traits, namely the probability of breeding, reproductive effort and mother and offspring condition, in the bank vole (Myodes glareolus). Using 9 years empirical data in a PUUV endemic area in Central Finland, we found differences between reproductive characteristics of PUUV-infected and uninfected female bank voles. 3. Young infected females had a significantly higher, and old individuals lower, likelihood of reproducing than uninfected animals during the middle of the breeding season. The implication is that PUUV infection may have long-term deleterious effects that are observed at old age, while in young individuals, the infection may enhance breeding probability by directing resources towards current breeding. 4. Moreover, PUUV infection was related with the mother's body condition. Infected mothers were in poorer condition than uninfected mothers in the early breeding season, but were in better condition than uninfected mothers during the middle of the breeding season. Offspring body condition was positively associated with mother's body condition, which, in turn, was related to the PUUV infection status of the mother. 5. Our findings indicate that chronic infection may affect the reproduction of female hosts, but the effect is dependent on the host age. The effect of chronic hantavirus infection was small and density-independent and hence unlikely to contribute to the cyclic population dynamics of the host. However, the effects on a female's reproductive output might affect the abundance of young susceptible individuals in the population and hence influence the transmission and persistence of the pathogen. Although experimental and long-term capture-mark-recapture studies are required to further clarify the fitness effects of hantavirus infection and their consequences for pathogen dynamics, this study shows that the infection may have complex effects that are dependent on the age of the individual and the time of the breeding season.


Assuntos
Arvicolinae , Fertilidade , Infecções por Hantavirus/veterinária , Virus Puumala/fisiologia , Reprodução , Doenças dos Roedores/fisiopatologia , Fatores Etários , Animais , Feminino , Finlândia , Infecções por Hantavirus/fisiopatologia , Estações do Ano
20.
Neurosci Biobehav Rev ; 157: 105527, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160722

RESUMO

Domestic dogs (Canis familiaris) have excellent olfactory processing capabilities that are utilized widely in human society e.g., working with customs, police, and army; their scent detection is also used in guarding, hunting, mold-sniffing, searching for missing people or animals, and facilitating the life of the disabled. Sniffing and searching for odors is a natural, species-typical behavior and essential for the dog's welfare. While taking advantage of this canine ability widely, we understand its foundations and implications quite poorly. We can improve animal welfare by better understanding their olfactory world. In this review, we outline the olfactory processing of dogs in the nervous system, summarize the current knowledge of scent detection and differentiation; the effect of odors on the dogs' cognitive and emotional processes and the dog-human bond; and consider the methodological advancements that could be developed further to aid in our understanding of the canine world of odors.


Assuntos
Emoções , Olfato , Cães , Humanos , Animais , Olfato/fisiologia , Emoções/fisiologia , Odorantes , Sistema Nervoso , Cognição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA