Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Hum Mol Genet ; 31(22): 3897-3913, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-35766882

RESUMO

Peroxiredoxin 3 (PRDX3) encodes a mitochondrial antioxidant protein, which is essential for the control of reactive oxygen species homeostasis. So far, PRDX3 mutations are involved in mild-to-moderate progressive juvenile onset cerebellar ataxia. We aimed to unravel the molecular bases underlying the disease in an infant suffering from cerebellar ataxia that started at 19 months old and presented severe cerebellar atrophy and peripheral neuropathy early in the course of disease. By whole exome sequencing, we identified a novel homozygous mutation, PRDX3 p.D163E, which impaired the mitochondrial ROS defense system. In mouse primary cortical neurons, the exogenous expression of PRDX3 p.D163E was reduced and triggered alterations in neurite morphology and in mitochondria. Mitochondrial computational parameters showed that p.D163E led to serious mitochondrial alterations. In transfected HeLa cells expressing the mutation, mitochondria accumulation was detected by correlative light electron microscopy. Mitochondrial morphology showed severe changes, including extremely damaged outer and inner membranes with a notable cristae disorganization. Moreover, spherical structures compatible with lipid droplets were identified, which can be associated with a generalized response to stress and can be involved in the removal of unfolded proteins. In the patient's fibroblasts, PRDX3 expression was nearly absent. The biochemical analysis suggested that the mutation p.D163E would result in an unstable structure tending to form aggregates that trigger unfolded protein responses via mitochondria and endoplasmic reticulum. Altogether, our findings broaden the clinical spectrum of the recently described PRDX3-associated neurodegeneration and provide new insight into the pathological mechanisms underlying this new form of cerebellar ataxia.


Assuntos
Ataxia Cerebelar , Degenerações Espinocerebelares , Humanos , Animais , Camundongos , Peroxirredoxina III/genética , Peroxirredoxina III/metabolismo , Células HeLa , Ataxia/genética , Mutação , Proteínas Mitocondriais/genética
3.
PLoS Pathog ; 18(7): e1010631, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35816514

RESUMO

The S:A222V point mutation, within the G clade, was characteristic of the 20E (EU1) SARS-CoV-2 variant identified in Spain in early summer 2020. This mutation has since reappeared in the Delta subvariant AY.4.2, raising questions about its specific effect on viral infection. We report combined serological, functional, structural and computational studies characterizing the impact of this mutation. Our results reveal that S:A222V promotes an increased RBD opening and slightly increases ACE2 binding as compared to the parent S:D614G clade. Finally, S:A222V does not reduce sera neutralization capacity, suggesting it does not affect vaccine effectiveness.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Patrimônio Genético , Humanos , Mutação , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Receptores Virais/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
4.
J Inherit Metab Dis ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740568

RESUMO

N-acetylglutamate synthase (NAGS) makes acetylglutamate, the essential activator of the first, regulatory enzyme of the urea cycle, carbamoyl phosphate synthetase 1 (CPS1). NAGS deficiency (NAGSD) and CPS1 deficiency (CPS1D) present identical phenotypes. However, they must be distinguished, because NAGSD is cured by substitutive therapy with the N-acetyl-L-glutamate analogue N-carbamyl-L-glutamate, while curative therapy of CPS1D requires liver transplantation. Since their differentiation is done genetically, it is important to ascertain the disease-causing potential of CPS1 and NAGS genetic variants. With this goal, we previously carried out site-directed mutagenesis studies with pure recombinant human CPS1. We could not do the same with human NAGS (HuNAGS) because of enzyme instability, leading to our prior utilization of a bacterial NAGS as an imperfect surrogate of HuNAGS. We now use genuine HuNAGS, stabilized as a chimera of its conserved domain (cHuNAGS) with the maltose binding protein (MBP), and produced in Escherichia coli. MBP-cHuNAGS linker cleavage allowed assessment of the enzymatic properties and thermal stability of cHuNAGS, either wild-type or hosting each one of 23 nonsynonymous single-base changes found in NAGSD patients. For all but one change, disease causation was accounted by the enzymatic alterations identified, including, depending on the variant, loss of arginine activation, increased Km Glutamate, active site inactivation, decreased thermal stability, and protein misfolding. Our present approach outperforms experimental in vitro use of bacterial NAGS or in silico utilization of prediction servers (including AlphaMissense), illustrating with HuNAGS the value for UCDs of using recombinant enzymes for assessing disease-causation and molecular pathogenesis, and for therapeutic guidance.

5.
Vet Res ; 55(1): 11, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38268053

RESUMO

Streptococcus suis is a zoonotic pathogen that causes a major health problem in the pig production industry worldwide. Spain is one of the largest pig producers in the world. This work aimed to investigate the genetic and phenotypic features of invasive S. suis isolates recovered in Spain. A panel of 156 clinical isolates recovered from 13 Autonomous Communities, representing the major pig producers, were analysed. MLST and serotyping analysis revealed that most isolates (61.6%) were assigned to ST1 (26.3%), ST123 (18.6%), ST29 (9.6%), and ST3 (7.1%). Interestingly, 34 new STs were identified, indicating the emergence of novel genetic lineages. Serotypes 9 (27.6%) and 1 (21.8%) prevailed, followed by serotypes 7 (12.8%) and 2 (12.2%). Analysis of 13 virulence-associated genes showed significant associations between ST, serotype, virulence patterns, and clinical features, evidencing particular virulence traits associated with genetic clusters. The pangenome was generated, and the core genome was distributed in 7 Bayesian groups where each group included a variable set of over- and under-represented genes of different categories. The study provides comprehensive data and knowledge to improve the design of new vaccines, antimicrobial treatments, and bacterial typing approaches.


Assuntos
Streptococcus suis , Animais , Suínos , Streptococcus suis/genética , Espanha/epidemiologia , Teorema de Bayes , Tipagem de Sequências Multilocus/veterinária , Virulência , Genômica
6.
Int J Mol Sci ; 24(20)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37894882

RESUMO

Bacteriophage therapy is considered one of the most promising tools to control zoonotic bacteria, such as Salmonella, in broiler production. Phages exhibit high specificity for their targeted bacterial hosts, causing minimal disruption to the niche microbiota. However, data on the gut environment's response to phage therapy in poultry are limited. This study investigated the influence of Salmonella phage on host physiology through caecal microbiota and metabolome modulation using high-throughput 16S rRNA gene sequencing and an untargeted metabolomics approach. We employed 24 caecum content samples and 24 blood serum samples from 4-, 5- and 6-week-old broilers from a previous study where Salmonella phages were administered via feed in Salmonella-infected broilers, which were individually weighed weekly. Phage therapy did not affect the alpha or beta diversity of the microbiota. Specifically, we observed changes in the relative abundance of 14 out of the 110 genera using the PLS-DA and Bayes approaches. On the other hand, we noted changes in the caecal metabolites (63 up-accumulated and 37 down-accumulated out of the 1113 caecal metabolites). Nevertheless, the minimal changes in blood serum suggest a non-significant physiological response. The application of Salmonella phages under production conditions modulates the caecal microbiome and metabolome profiles in broilers without impacting the host physiology in terms of growth performance.


Assuntos
Microbiota , Terapia por Fagos , Fagos de Salmonella , Animais , Galinhas/genética , RNA Ribossômico 16S/genética , Teorema de Bayes , Microbiota/genética , Fagos de Salmonella/genética , Ceco/microbiologia , Metaboloma , Salmonella/genética
7.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003592

RESUMO

Cerebellar atrophy (CA) is a frequent neuroimaging finding in paediatric neurology, usually associated with cerebellar ataxia. The list of genes involved in hereditary forms of CA is continuously growing and reveals its genetic complexity. We investigated ten cases with early-onset cerebellar involvement with and without ataxia by exome sequencing or by a targeted panel with 363 genes involved in ataxia or spastic paraplegia. Novel variants were investigated by in silico or experimental approaches. Seven probands carry causative variants in well-known genes associated with CA or cerebellar hypoplasia: SETX, CACNA1G, CACNA1A, CLN6, CPLANE1, and TBCD. The remaining three cases deserve special attention; they harbour variants in MAST1, PI4KA and CLK2 genes. MAST1 is responsible for an ultrarare condition characterised by global developmental delay and cognitive decline; our index case added ataxia to the list of concomitant associated symptoms. PIK4A is mainly related to hypomyelinating leukodystrophy; our proband presented with pure spastic paraplegia and normal intellectual capacity. Finally, in a patient who suffers from mild ataxia with oculomotor apraxia, the de novo novel CLK2 c.1120T>C variant was found. The protein expression of the mutated protein was reduced, which may indicate instability that would affect its kinase activity.


Assuntos
Ataxia Cerebelar , Doenças Cerebelares , Doenças Neurodegenerativas , Paraplegia Espástica Hereditária , Criança , Humanos , Heterogeneidade Genética , Mutação , Ataxia Cerebelar/genética , Ataxia Cerebelar/diagnóstico , Ataxia , Fenótipo , Paraplegia Espástica Hereditária/genética , Paraplegia , Linhagem , Atrofia , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Membrana/genética
8.
Neuropathol Appl Neurobiol ; 48(5): e12817, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35342985

RESUMO

AIMS: We aim to present data obtained from three patients belonging to three unrelated families with an infantile onset demyelinating neuropathy associated to somatic and neurodevelopmental delay and to describe the underlying genetic changes. METHODS: We performed whole-exome sequencing on genomic DNA from the patients and their parents and reviewed the clinical, muscle and nerve data, the serial neurophysiological studies, brain and muscle MRIs, as well as the respiratory chain complex activity in the muscle of the three index patients. Computer modelling was used to characterise the new missense variant detected. RESULTS: All three patients had a short stature, delayed motor milestone acquisition, intellectual disability and cerebellar abnormalities associated with a severe demyelinating neuropathy, with distinct morphological features. Despite the proliferation of giant mitochondria, the mitochondrial respiratory chain complex activity in skeletal muscle was normal, except in one patient in whom there was a mild decrease in complex I enzyme activity. All three patients carried the same two compound heterozygous variants of the TRMT5 (tRNA Methyltransferase 5) gene, one known pathogenic frameshift mutation [c.312_315del (p.Ile105Serfs*4)] and a second rare missense change [c.665 T > C (p.Ile222Thr)]. TRMT5 is a nuclear-encoded protein involved in the post-transcriptional maturation of mitochondrial tRNA. Computer modelling of the human TRMT5 protein structure suggests that the rare p.Ile222Thr mutation could affect the stability of tRNA binding. CONCLUSIONS: Our study expands the phenotype of mitochondrial disorders caused by TRTM5 mutations and defines a new form of recessive demyelinating peripheral neuropathy.


Assuntos
Doenças Mitocondriais , Doenças do Sistema Nervoso Periférico , tRNA Metiltransferases , Humanos , Doenças Mitocondriais/patologia , Mutação , Fenótipo , RNA de Transferência , Síndrome , tRNA Metiltransferases/genética
9.
BMC Vet Res ; 18(1): 370, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224622

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, has infected several animal species, including dogs, presumably via human-to-animal transmission. Most infected dogs reported were asymptomatic, with low viral loads. However, in this case we detected SARS-CoV-2 in a dog from the North African coastal Spanish city of Ceuta presenting hemorrhagic diarrhea, a disease also reported earlier on in an infected dog from the USA. CASE PRESENTATION: In early January 2021, a West Highland Terrier pet dog from Ceuta (Spain) presented hemorrhagic diarrhea with negative tests for candidate microbial pathogens. Since the animal was in a household whose members suffered SARS-CoV-2 in December 2020, dog feces were analyzed for SARS-CoV-2, proving positive in a two-tube RT-PCR test, with confirmation by sequencing a 399-nucleotide region of the spike (S) gene. Furthermore, next-generation sequencing (NGS) covered > 90% SARS-CoV-2 genome sequence, allowing to classify it as variant B.1.177. Remarkably, the sequence revealed the Ile402Val substitution in the spike protein (S), of potential concern because it mapped in the receptor binding domain (RBD) that mediates virus interaction with the cell. NGS reads mapping to bacterial genomes showed that the dog fecal microbiome fitted best the characteristic microbiome of dog's acute hemorrhagic diarrhea. CONCLUSION: Our findings exemplify dog infection stemming from the human SARS-CoV-2 pandemic, providing nearly complete-genome sequencing of the virus, which is recognized as belonging to the B.1.177 variant, adding knowledge on variant circulation in a geographic region and period for which there was little viral variant characterization. A single amino acid substitution found in the S protein that could have been of concern is excluded to belong to this category given its rarity and intrinsic nature. The dog's pathology suggests that SARS-CoV-2 could affect the gastrointestinal tract of the dog.


Assuntos
COVID-19 , Doenças do Cão , Animais , COVID-19/veterinária , Diarreia/veterinária , Doenças do Cão/diagnóstico , Cães , Humanos , Nucleotídeos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
10.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233161

RESUMO

Our clinical series comprises 124 patients with movement disorders (MDs) and/or ataxia with cerebellar atrophy (CA), many of them showing signs of neurodegeneration with brain iron accumulation (NBIA). Ten NBIA genes are accepted, although isolated cases compatible with abnormal brain iron deposits are known. The patients were evaluated using standardised clinical assessments of ataxia and MDs. First, NBIA genes were analysed by Sanger sequencing and 59 patients achieved a diagnosis, including the detection of the founder mutation PANK2 p.T528M in Romani people. Then, we used a custom panel MovDisord and/or exome sequencing; 29 cases were solved with a great genetic heterogeneity (34 different mutations in 23 genes). Three patients presented brain iron deposits with Fe-sensitive MRI sequences and mutations in FBXO7, GLB1, and KIF1A, suggesting an NBIA-like phenotype. Eleven patients showed very early-onset ataxia and CA with cortical hyperintensities caused by mutations in ITPR1, KIF1A, SPTBN2, PLA2G6, PMPCA, and PRDX3. The novel variants were investigated by structural modelling, luciferase analysis, transcript/minigenes studies, or immunofluorescence assays. Our findings expand the phenotypes and the genetics of MDs and ataxias with early-onset CA and cortical hyperintensities and highlight that the abnormal brain iron accumulation or early cerebellar gliosis may resembling an NBIA phenotype.


Assuntos
Transtornos dos Movimentos , Doenças Neurodegenerativas , Ataxia/genética , Encéfalo , Humanos , Ferro , Cinesinas , Mutação , Doenças Neurodegenerativas/genética , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/genética
11.
J Inherit Metab Dis ; 43(4): 657-670, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32017139

RESUMO

The bifunctional homooligomeric enzyme Δ1 -pyrroline-5-carboxylate synthetase (P5CS) and its encoding gene ALDH18A1 were associated with disease in 1998. Two siblings who presented paradoxical hyperammonemia (alleviated by protein), mental disability, short stature, cataracts, cutis laxa, and joint laxity, were found to carry biallelic ALDH18A1 mutations. They showed biochemical indications of decreased ornithine/proline synthesis, agreeing with the role of P5CS in the biosynthesis of these amino acids. Of 32 patients reported with this neurocutaneous syndrome, 21 familial ones hosted homozygous or compound heterozygous ALDH18A1 mutations, while 11 sporadic ones carried de novo heterozygous ALDH18A1 mutations. In 2015 to 2016, an upper motor neuron syndrome (spastic paraparesis/paraplegia SPG9) complicated with some traits of the neurocutaneous syndrome, although without report of cutis laxa, joint laxity, or herniae, was associated with monoallelic or biallelic ALDH18A1 mutations with, respectively, dominant and recessive inheritance. Of 50 SPG9 patients reported, 14 and 36 (34/2 familial/sporadic) carried, respectively, biallelic and monoallelic mutations. Thus, two neurocutaneous syndromes (recessive and dominant cutis laxa 3, abbreviated ARCL3A and ADCL3, respectively) and two SPG9 syndromes (recessive SPG9B and dominant SPG9A) are caused by essentially different spectra of ALDH18A1 mutations. On the bases of the clinical data (including our own prior patients' reports), the ALDH18A1 mutations spectra, and our knowledge on the P5CS protein, we conclude that the four syndromes share the same pathogenic mechanisms based on decreased P5CS function. Thus, these syndromes represent a continuum of increasing severity (SPG9A < SPG9B < ADCL3 ≤ ARCL3A) of the same disease, P5CS deficiency, in which the dominant mutations cause loss-of-function by dominant-negative mechanisms.


Assuntos
Aldeído Desidrogenase/genética , Osso e Ossos/anormalidades , Catarata/genética , Transtornos do Crescimento/genética , Paraplegia Espástica Hereditária/genética , Aldeído Desidrogenase/deficiência , Humanos , Mutação , Linhagem , Fenótipo , Ureia/metabolismo
12.
Neurogenetics ; 18(4): 245-250, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28975462

RESUMO

In two siblings, who suffer from an early childhood-onset axonal polyneuropathy with exclusive involvement of motor fibers, the c.629T>C (p.F210S) mutation was identified in the X-linked AIFM1 gene, which encodes for the apoptosis-inducing factor (AIF). The mutation was predicted as deleterious, according to in silico analysis. A decreased expression of the AIF protein, altered cellular morphology, and a fragmented mitochondrial network were observed in the proband's fibroblasts. This new form of motor neuropathy expands the phenotypic spectrum of AIFM1 mutations and therefore, the AIFM1 gene should be considered in the diagnosis of hereditary motor neuropathies.


Assuntos
Fator de Indução de Apoptose/genética , Atrofia Muscular Espinal/genética , Mutação/genética , Feminino , Genes Ligados ao Cromossomo X/genética , Humanos , Lactente , Masculino , Atrofia Muscular Espinal/diagnóstico , Linhagem , Fenótipo , Proteínas/genética
13.
Hum Mutat ; 37(7): 679-94, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27037498

RESUMO

N-acetyl-L-glutamate synthase (NAGS) deficiency (NAGSD), the rarest urea cycle defect, is clinically indistinguishable from carbamoyl phosphate synthetase 1 deficiency, rendering the identification of NAGS gene mutations key for differentiation, which is crucial, as only NAGSD has substitutive therapy. Over the last 13 years, we have identified 43 patients from 33 families with NAGS mutations, of which 14 were novel. Overall, 36 NAGS mutations have been found so far in 56 patients from 42 families, of which 76% are homozygous for the mutant allele. 61% of mutations are missense changes. Lack or decrease of NAGS protein is predicted for ∼1/3 of mutations. Missense mutations frequency is inhomogeneous along NAGS: null for exon 1, but six in exon 6, which reflects the paramount substrate binding/catalytic role of the C-terminal domain (GNAT domain). Correspondingly, phenotypes associated with missense mutations mapping in the GNAT domain are more severe than phenotypes of amino acid kinase domain-mapping missense mutations. Enzyme activity and stability assays with 12 mutations introduced into pure recombinant Pseudomonas aeruginosa NAGS, together with in silico structural analysis, support the pathogenic role of most NAGSD-associated mutations found. The disease-causing mechanisms appear to be, from higher to lower frequency, decreased solubility/stability, aberrant kinetics/catalysis, and altered arginine modulation.


Assuntos
Aminoácido N-Acetiltransferase/genética , Mutação de Sentido Incorreto , Distúrbios Congênitos do Ciclo da Ureia/genética , Aminoácido N-Acetiltransferase/química , Aminoácido N-Acetiltransferase/metabolismo , Predisposição Genética para Doença , Humanos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica
14.
Vet Sci ; 11(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38250942

RESUMO

Avian botulism caused by Clostridium botulinum emerged in 1910, affecting birds across North America, leading to severe outbreaks exacerbated by climate change, decreasing water levels, and inadequate wastewater management. While deadly for birds, its epidemiological impact on humans and other animals remains limited. Despite its significance, understanding and controlling the disease remain challenging. This review delves into the pathogen's epidemiology in wild bird populations, exploring the transmission, pathogenicity, clinical symptoms, diagnosis and treatment. The disease's growing concern in wild birds relates to the bacterium's adaptability and expansive spread, evident through genetic similarities among strains across countries. Outbreaks are influenced by environmental factors such as temperature and soil characteristics. Wild birds inadvertently transmit the bacterium, perpetuating the cycle through carcasses and flies. Some species suffer severely, while others, like scavengers, show resistance. Understanding disease mechanisms, involving potential toxin ingestion or internal production, remains ongoing. Clinical signs vary, affecting diverse bird orders. Diagnostic methods evolve, with treatment success varying among affected populations. Prevention and surveillance take precedence due to treatment challenges, emphasising population-based strategies and preventive measures to manage the widespread presence of C. botulinum.

15.
Poult Sci ; 103(2): 103284, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056053

RESUMO

The concept of backyard poultry historically encompassed "food-producing animals." Nevertheless, a recent shift in livestock production paradigms within developed countries is evident, as backyard poultry owners now raise their birds for purposes beyond self-consumption, raising animals in a familiar way, and fostering emotional bonds with them. Because backyard animals are frequently privately owned, and the resulting products are typically not marketed, very little information is available about the demographic profile of backyard owners and information on flocks' characteristics, husbandry, and welfare. Thus, this review aims to clarify the characteristics of backyard poultry, highlighting the prevalent infectious diseases and the zoonotic risk to which farmers are exposed. According to the FAO, there are different types of poultry production systems: intensive, sub-intensive, and extensive. The system conditions, requirements, and the resulting performance differ extensively due to the type of breed, feeding practices, prevalence of disease, prevention and control of diseases, flock management, and the interactions among all these factors. The presence and transmission of infectious diseases in avian species is a problem that affects both the animals themselves and public health. Bacterial (Escherichia coli, Salmonella, Campylobacter, and Mycoplasma), parasitic (helminths, louses, and mites), and viral (Avian influenza, Newcastle, Marek, Infectious Bronchitis, Gumboro, Infectious Laringotracheitis, and Fowlpox) are the most important pathogens involved in backyard poultry health. In addition, Avian influenza, Salmonella, Campylobacter, and E. coli, could be a risk for backyard farmers and/or backyard-derived products consumers. Thus, proper biosecurity implementation measures are mandatory to control them. While the principles and practices of on-farm biosecurity may be well-versed among commercial farmers, hobbyists, and backyard farmers might not be familiar with the necessary steps to protect their flocks from infectious diseases and curb their transmission. This sector represents the fourth category of poultry farming, characterized by the lowest biosecurity standards. Consequently, it is imperative to address the legal status of backyard poultry, educate owners about biosecurity measures, and promote proper veterinary care and disease control.


Assuntos
Doenças Transmissíveis , Influenza Aviária , Doenças das Aves Domésticas , Animais , Aves Domésticas , Influenza Aviária/epidemiologia , Galinhas , Escherichia coli , Doenças Transmissíveis/veterinária , Doenças das Aves Domésticas/microbiologia , Criação de Animais Domésticos/métodos
16.
Life (Basel) ; 14(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38398679

RESUMO

Companion animal ownership has evolved to new exotic animals, including small mammals, posing a new public health challenge, especially due to the ability of some of these new species to harbour zoonotic bacteria, such as Salmonella, and spread their antimicrobial resistances (AMR) to other bacteria through the environment they share. Therefore, the objective of the present pilot study was to evaluate the current epidemiological AMR situation in commensal Escherichia coli and Salmonella spp., in non-traditional companion animal small mammals in the Valencia region. For this purpose, 72 rectal swabs of nine different species of small mammals were taken to assess the antimicrobial susceptibility against 28 antibiotics. A total of one Salmonella enterica serovar Telelkebir 13,23:d:e,n,z15 and twenty commensal E. coli strains were isolated. For E. coli strains, a high prevalence of AMR (85%) and MDR (82.6%) was observed, although neither of them had access outside the household. The highest AMR were observed in quinolones, one of the highest priority critically important antimicrobials (HPCIAs) in human medicine. However, no AMR were found for Salmonella. In conclusion, the results showed that small mammals' commensal E. coli poses a public health risk due to the high AMR found, and the ability of this bacterium to transmit its resistance genes to other bacteria. For this reason, this pilot study highlighted the need to establish programmes to control AMR trends in the growing population of new companion animals, as they could disseminate AMR to humans and animals through their shared environment.

17.
Vet Sci ; 11(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38393072

RESUMO

The emergence of antimicrobial resistance (AMR) and multidrug resistance (MDR) among microorganisms to commonly used antibiotics is a growing concern in both human and veterinary medicine. Companion animals play a significant role in the epidemiology of AMR, as their population is continuously increasing, posing a risk of disseminating AMR, particularly to strains of public health importance, such as methicillin-resistant Staphylococcus strains. Thus, this study aimed to investigate the prevalence of AMR and MDR in commensal and infection-causing Staphylococcus spp. in dogs and cats in Valencia region. For this purpose, 271 samples were taken from veterinary centers to assess antimicrobial susceptibility against 20 antibiotics, including some of the most important antibiotics for the treatment of Staphylococcus infections, including the five last resort antibiotics in this list. Of all the samples, 187 Staphylococcus spp. strains were recovered from asymptomatic and skin-diseased dogs and cats, of which S. pseudintermedius (≈60%) was more prevalent in dogs, while S. felis (≈50%) was more prevalent in cats. In the overall analysis of the isolates, AMR was observed for all antibiotics tested, including those crucial in human medicine. Furthermore, over 70% and 30% of the strains in dogs and cats, respectively, exhibited MDR. This study highlights the significance of monitoring the trends in AMR and MDR among companion animals. The potential contribution of these animals to the dissemination of AMR and its resistance genes to humans, other animals, and their shared environment underscores the necessity for adopting a One Health approach.

18.
Plants (Basel) ; 13(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38337929

RESUMO

Seagrasses, which are marine flowering plants, provide numerous ecological services and goods. Zostera marina is the most widely distributed seagrass in temperate regions of the northern hemisphere, tolerant of a wide range of environmental conditions. This study aimed to (i) examine seasonal trends and correlations between key seagrass traits such as biomass production and biochemical composition, and (ii) compare seasonal adaptation of two ecotypes of Z. marina exposed to similar environmental conditions on the west coast of Ireland. During summer, plants accumulated higher levels of energetic compounds and levels of unsaturated fatty acids (FAs) decreased. Conversely, the opposite trend was observed during colder months. These findings indicate a positive seasonal correlation between the production of non-structural carbohydrates and saturated fatty acids (SFAs), suggesting that seagrasses accumulate and utilize both energetic compounds simultaneously during favorable and unfavorable environmental conditions. The two ecotypes displayed differential seasonal responses by adjusting plant morphology and production, the utilization of energetic reserves, and modulating unsaturation levels of fatty acids in seagrass leaves. These results underscore the correlated seasonal responses of key compounds, capturing ecotype-specific environmental adaptations and ecological strategies, emphasizing the robust utility of these traits as a valuable eco-physiological tool.

19.
Animals (Basel) ; 14(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731285

RESUMO

In the ex situ conservation of chondrichthyan species, successful reproduction in aquaria is essential. However, these species often exhibit reduced reproductive success under human care. A key aspect is that conventional sperm analyses do not provide insights into the functional competence of sperm. However, proteomics analysis enables a better understanding of male physiology, gaining relevance as a powerful tool for discovering protein biomarkers related to fertility. The present work aims to build the first proteome database for shark semen and to investigate the proteomic profiles of seminal plasma and spermatozoa from small-spotted catsharks (Scyliorhinus canicula) related to the underlying adaptations to both natural and aquarium environments, thereby identifying the reproductive impact in aquarium specimens. A total of 305 seminal plasma and 535 spermatozoa proteins were identified. Among these, 89 proteins (29.2% of the seminal plasma set) were common to both spermatozoa and seminal plasma. In the seminal plasma, only adenosylhomocysteinase protein showed differential abundance (DAP) between wild and aquarium animals. With respect to the spermatozoa proteins, a total of 107 DAPs were found between groups. Gene Ontology enrichment analysis highlighted the primary functional roles of these DAPs involved in oxidoreductase activity. Additionally, KEGG analysis indicated that these DAPs were primarily associated with metabolic pathways and carbon metabolism. In conclusion, we have successfully generated an initial proteome database for S. canicula seminal plasma and spermatozoa. Furthermore, we have identified protein variations, predominantly within spermatozoa, between aquarium and wild populations of S. canicula. These findings provide a foundation for future biomarker discovery in shark reproduction studies. However, additional research is required to determine whether these protein variations correlate with reproductive declines in captive sharks.

20.
Microorganisms ; 11(7)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37512937

RESUMO

Salmonella spp. has been globally recognized as one of the leading causes of acute human bacterial gastroenteritis resulting from the consumption of animal-derived products. Salmonella Enteritidis, S. Typhimurium, and its monophasic variant are the main serovars responsible for human disease. However, a serovar known as S. Infantis has emerged as the fourth most prevalent serovar associated with human disease. A total of 95% of isolated S. Infantis serovars originate from broilers and their derived products. This serovar is strongly associated with an elevated antimicrobial (AMR) and multidrug resistance, a resistance to disinfectants, an increased tolerance to environmental mercury, a heightened virulence, and an enhanced ability to form biofilms and attach to host cells. Furthermore, this serovar harbors genes that confer resistance to colistin, a last-resort antibiotic in human medicine, and it has the potential to acquire additional transferable AMR against other critically important antimicrobials, posing a new and significant challenge to global public health. This review provides an overview of the current status of the S. Infantis serovar in the poultry sector, focusing on its key virulence factors, including its virulence genes, antimicrobial resistance, and biofilm formation. Additionally, novel holistic strategies for controlling S. Infantis along the entire food chain are presented in this review.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA