Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(1): e2313171120, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38147553

RESUMO

Networks allow us to describe a wide range of interaction phenomena that occur in complex systems arising in such diverse fields of knowledge as neuroscience, engineering, ecology, finance, and social sciences. Until very recently, the primary focus of network models and tools has been on describing the pairwise relationships between system entities. However, increasingly more studies indicate that polyadic or higher-order group relationships among multiple network entities may be the key toward better understanding of the intrinsic mechanisms behind the functionality of complex systems. Such group interactions can be, in turn, described in a holistic manner by simplicial complexes of graphs. Inspired by these recently emerging results on the utility of the simplicial geometry of complex networks for contagion propagation and armed with a large-scale synthetic social contact network (also known as a digital twin) of the population in the U.S. state of Virginia, in this paper, we aim to glean insights into the role of higher-order social interactions and the associated varying social group determinants on COVID-19 propagation and mitigation measures.


Assuntos
COVID-19 , Epidemias , Humanos , COVID-19/epidemiologia , Virginia
2.
Proc Natl Acad Sci U S A ; 120(16): e2216948120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036987

RESUMO

Indoor superspreading events are significant drivers of transmission of respiratory diseases. In this work, we study the dynamics of airborne transmission in consecutive meetings of individuals in enclosed spaces. In contrast to the usual pairwise-interaction models of infection where effective contacts transmit the disease, we focus on group interactions where individuals with distinct health states meet simultaneously. Specifically, the disease is transmitted by infected individuals exhaling droplets (contributing to the viral load in the closed space) and susceptible ones inhaling the contaminated air. We propose a modeling framework that couples the fast dynamics of the viral load attained over meetings in enclosed spaces and the slow dynamics of disease progression at the population level. Our modeling framework incorporates the multiple time scales involved in different setups in which indoor events may happen, from single-time events to events hosting multiple meetings per day, over many days. We present theoretical and numerical results of trade-offs between the room characteristics (ventilation system efficiency and air mass) and the group's behavioral and composition characteristics (group size, mask compliance, testing, meeting time, and break times), that inform indoor policies to achieve disease control in closed environments through different pathways. Our results emphasize the impact of break times, mask-wearing, and testing on facilitating the conditions to achieve disease control. We study scenarios of different break times, mask compliance, and testing. We also derive policy guidelines to contain the infection rate under a certain threshold.


Assuntos
Poluição do Ar em Ambientes Fechados , Poluição do Ar , Humanos
3.
Proc Natl Acad Sci U S A ; 120(8): e2215424120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36780515

RESUMO

The Russian invasion of Ukraine on February 24, 2022, has displaced more than a quarter of the population. Assessing disease burdens among displaced people is instrumental in informing global public health and humanitarian aid efforts. We estimated the disease burden in Ukrainians displaced both within Ukraine and to other countries by combining a spatiotemporal model of forcible displacement with age- and gender-specific estimates of cardiovascular disease (CVD), diabetes, cancer, HIV, and tuberculosis (TB) in each of Ukraine's 629 raions (i.e., districts). Among displaced Ukrainians as of May 13, we estimated that more than 2.63 million have CVDs, at least 615,000 have diabetes, and over 98,500 have cancer. In addition, more than 86,000 forcibly displaced individuals are living with HIV, and approximately 13,500 have TB. We estimated that the disease prevalence among refugees was lower than the national disease prevalence before the invasion. Accounting for internal displacement and healthcare facilities impacted by the conflict, we estimated that the number of people per hospital has increased by more than two-fold in some areas. As regional healthcare systems come under increasing strain, these estimates can inform the allocation of critical resources under shifting disease burdens.


Assuntos
Doenças Cardiovasculares , Infecções por HIV , Refugiados , Tuberculose , Humanos , Saúde Pública , Atenção à Saúde , Tuberculose/epidemiologia , Efeitos Psicossociais da Doença , Infecções por HIV/epidemiologia
4.
Proc Natl Acad Sci U S A ; 120(48): e2305227120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37983514

RESUMO

Disease surveillance systems provide early warnings of disease outbreaks before they become public health emergencies. However, pandemics containment would be challenging due to the complex immunity landscape created by multiple variants. Genomic surveillance is critical for detecting novel variants with diverse characteristics and importation/emergence times. Yet, a systematic study incorporating genomic monitoring, situation assessment, and intervention strategies is lacking in the literature. We formulate an integrated computational modeling framework to study a realistic course of action based on sequencing, analysis, and response. We study the effects of the second variant's importation time, its infectiousness advantage and, its cross-infection on the novel variant's detection time, and the resulting intervention scenarios to contain epidemics driven by two-variants dynamics. Our results illustrate the limitation in the intervention's effectiveness due to the variants' competing dynamics and provide the following insights: i) There is a set of importation times that yields the worst detection time for the second variant, which depends on the first variant's basic reproductive number; ii) When the second variant is imported relatively early with respect to the first variant, the cross-infection level does not impact the detection time of the second variant. We found that depending on the target metric, the best outcomes are attained under different interventions' regimes. Our results emphasize the importance of sustained enforcement of Non-Pharmaceutical Interventions on preventing epidemic resurgence due to importation/emergence of novel variants. We also discuss how our methods can be used to study when a novel variant emerges within a population.


Assuntos
COVID-19 , Pandemias , Humanos , Pandemias/prevenção & controle , Saúde Pública , Surtos de Doenças/prevenção & controle , Genômica
5.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35046025

RESUMO

The ongoing COVID-19 pandemic underscores the importance of developing reliable forecasts that would allow decision makers to devise appropriate response strategies. Despite much recent research on the topic, epidemic forecasting remains poorly understood. Researchers have attributed the difficulty of forecasting contagion dynamics to a multitude of factors, including complex behavioral responses, uncertainty in data, the stochastic nature of the underlying process, and the high sensitivity of the disease parameters to changes in the environment. We offer a rigorous explanation of the difficulty of short-term forecasting on networked populations using ideas from computational complexity. Specifically, we show that several forecasting problems (e.g., the probability that at least a given number of people will get infected at a given time and the probability that the number of infections will reach a peak at a given time) are computationally intractable. For instance, efficient solvability of such problems would imply that the number of satisfying assignments of an arbitrary Boolean formula in conjunctive normal form can be computed efficiently, violating a widely believed hypothesis in computational complexity. This intractability result holds even under the ideal situation, where all the disease parameters are known and are assumed to be insensitive to changes in the environment. From a computational complexity viewpoint, our results, which show that contagion dynamics become unpredictable for both macroscopic and individual properties, bring out some fundamental difficulties of predicting disease parameters. On the positive side, we develop efficient algorithms or approximation algorithms for restricted versions of forecasting problems.


Assuntos
Modelos Epidemiológicos , Previsões/métodos , Algoritmos , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , Humanos , Probabilidade , SARS-CoV-2 , Fatores de Tempo
6.
Proc Natl Acad Sci U S A ; 119(42): e2205772119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215503

RESUMO

The power grid is going through significant changes with the introduction of renewable energy sources and the incorporation of smart grid technologies. These rapid advancements necessitate new models and analyses to keep up with the various emergent phenomena they induce. A major prerequisite of such work is the acquisition of well-constructed and accurate network datasets for the power grid infrastructure. In this paper, we propose a robust, scalable framework to synthesize power distribution networks that resemble their physical counterparts for a given region. We use openly available information about interdependent road and building infrastructures to construct the networks. In contrast to prior work based on network statistics, we incorporate engineering and economic constraints to create the networks. Additionally, we provide a framework to create ensembles of power distribution networks to generate multiple possible instances of the network for a given region. The comprehensive dataset consists of nodes with attributes, such as geocoordinates; type of node (residence, transformer, or substation); and edges with attributes, such as geometry, type of line (feeder lines, primary or secondary), and line parameters. For validation, we provide detailed comparisons of the generated networks with actual distribution networks. The generated datasets represent realistic test systems (as compared with standard test cases published by Institute of Electrical and Electronics Engineers (IEEE)) that can be used by network scientists to analyze complex events in power grids and to perform detailed sensitivity and statistical analyses over ensembles of networks.


Assuntos
Fontes de Energia Elétrica
7.
Proc Natl Acad Sci U S A ; 119(26): e2123355119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35733262

RESUMO

Nonpharmaceutical interventions (NPIs) such as mask wearing can be effective in mitigating the spread of infectious diseases. Therefore, understanding the behavioral dynamics of NPIs is critical for characterizing the dynamics of disease spread. Nevertheless, standard infection models tend to focus only on disease states, overlooking the dynamics of "beneficial contagions," e.g., compliance with NPIs. In this work, we investigate the concurrent spread of disease and mask-wearing behavior over multiplex networks. Our proposed framework captures both the competing and complementary relationships between the dueling contagion processes. Further, the model accounts for various behavioral mechanisms that influence mask wearing, such as peer pressure and fear of infection. Our results reveal that under the coupled disease-behavior dynamics, the attack rate of a disease-as a function of transition probability-exhibits a critical transition. Specifically, as the transmission probability exceeds a critical threshold, the attack rate decreases abruptly due to sustained mask-wearing responses. We empirically explore the causes of the critical transition and demonstrate the robustness of the observed phenomena. Our results highlight that without proper enforcement of NPIs, reductions in the disease transmission probability via other interventions may not be sufficient to reduce the final epidemic size.


Assuntos
Epidemias , Máscaras , Epidemias/prevenção & controle , Humanos
8.
BMC Bioinformatics ; 19(1): 449, 2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30466409

RESUMO

BACKGROUND: Visualization plays an important role in epidemic time series analysis and forecasting. Viewing time series data plotted on a graph can help researchers identify anomalies and unexpected trends that could be overlooked if the data were reviewed in tabular form; these details can influence a researcher's recommended course of action or choice of simulation models. However, there are challenges in reviewing data sets from multiple data sources - data can be aggregated in different ways (e.g., incidence vs. cumulative), measure different criteria (e.g., infection counts, hospitalizations, and deaths), or represent different geographical scales (e.g., nation, HHS Regions, or states), which can make a direct comparison between time series difficult. In the face of an emerging epidemic, the ability to visualize time series from various sources and organizations and to reconcile these datasets based on different criteria could be key in developing accurate forecasts and identifying effective interventions. Many tools have been developed for visualizing temporal data; however, none yet supports all the functionality needed for easy collaborative visualization and analysis of epidemic data. RESULTS: In this paper, we present EpiViewer, a time series exploration dashboard where users can upload epidemiological time series data from a variety of sources and compare, organize, and track how data evolves as an epidemic progresses. EpiViewer provides an easy-to-use web interface for visualizing temporal datasets either as line charts or bar charts. The application provides enhanced features for visual analysis, such as hierarchical categorization, zooming, and filtering, to enable detailed inspection and comparison of multiple time series on a single canvas. Finally, EpiViewer provides several built-in statistical Epi-features to help users interpret the epidemiological curves. CONCLUSION: EpiViewer is a single page web application that provides a framework for exploring, comparing, and organizing temporal datasets. It offers a variety of features for convenient filtering and analysis of epicurves based on meta-attribute tagging. EpiViewer also provides a platform for sharing data between groups for better comparison and analysis. Our user study demonstrated that EpiViewer is easy to use and fills a particular niche in the toolspace for visualization and exploration of epidemiological data.


Assuntos
Disseminação de Informação/métodos , Software/tendências , Humanos
9.
BMC Infect Dis ; 14: 12, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24405642

RESUMO

BACKGROUND: A forecast can be defined as an endeavor to quantitatively estimate a future event or probabilities assigned to a future occurrence. Forecasting stochastic processes such as epidemics is challenging since there are several biological, behavioral, and environmental factors that influence the number of cases observed at each point during an epidemic. However, accurate forecasts of epidemics would impact timely and effective implementation of public health interventions. In this study, we introduce a Dirichlet process (DP) model for classifying and forecasting influenza epidemic curves. METHODS: The DP model is a nonparametric Bayesian approach that enables the matching of current influenza activity to simulated and historical patterns, identifies epidemic curves different from those observed in the past and enables prediction of the expected epidemic peak time. The method was validated using simulated influenza epidemics from an individual-based model and the accuracy was compared to that of the tree-based classification technique, Random Forest (RF), which has been shown to achieve high accuracy in the early prediction of epidemic curves using a classification approach. We also applied the method to forecasting influenza outbreaks in the United States from 1997-2013 using influenza-like illness (ILI) data from the Centers for Disease Control and Prevention (CDC). RESULTS: We made the following observations. First, the DP model performed as well as RF in identifying several of the simulated epidemics. Second, the DP model correctly forecasted the peak time several days in advance for most of the simulated epidemics. Third, the accuracy of identifying epidemics different from those already observed improved with additional data, as expected. Fourth, both methods correctly classified epidemics with higher reproduction numbers (R) with a higher accuracy compared to epidemics with lower R values. Lastly, in the classification of seasonal influenza epidemics based on ILI data from the CDC, the methods' performance was comparable. CONCLUSIONS: Although RF requires less computational time compared to the DP model, the algorithm is fully supervised implying that epidemic curves different from those previously observed will always be misclassified. In contrast, the DP model can be unsupervised, semi-supervised or fully supervised. Since both methods have their relative merits, an approach that uses both RF and the DP model could be beneficial.


Assuntos
Epidemias , Influenza Humana/epidemiologia , Modelos Teóricos , Teorema de Bayes , Centers for Disease Control and Prevention, U.S. , Simulação por Computador , Surtos de Doenças , Previsões , Humanos , Saúde Pública , Processos Estocásticos , Estados Unidos
10.
Epidemics ; 47: 100775, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838462

RESUMO

Across many fields, scenario modeling has become an important tool for exploring long-term projections and how they might depend on potential interventions and critical uncertainties, with relevance to both decision makers and scientists. In the past decade, and especially during the COVID-19 pandemic, the field of epidemiology has seen substantial growth in the use of scenario projections. Multiple scenarios are often projected at the same time, allowing important comparisons that can guide the choice of intervention, the prioritization of research topics, or public communication. The design of the scenarios is central to their ability to inform important questions. In this paper, we draw on the fields of decision analysis and statistical design of experiments to propose a framework for scenario design in epidemiology, with relevance also to other fields. We identify six different fundamental purposes for scenario designs (decision making, sensitivity analysis, situational awareness, horizon scanning, forecasting, and value of information) and discuss how those purposes guide the structure of scenarios. We discuss other aspects of the content and process of scenario design, broadly for all settings and specifically for multi-model ensemble projections. As an illustrative case study, we examine the first 17 rounds of scenarios from the U.S. COVID-19 Scenario Modeling Hub, then reflect on future advancements that could improve the design of scenarios in epidemiological settings.


Assuntos
COVID-19 , Técnicas de Apoio para a Decisão , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , Previsões , SARS-CoV-2 , Doenças Transmissíveis/epidemiologia , Pandemias/prevenção & controle , Tomada de Decisões , Projetos de Pesquisa
11.
PNAS Nexus ; 3(3): pgae080, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38505694

RESUMO

The ongoing Russian aggression against Ukraine has forced over eight million people to migrate out of Ukraine. Understanding the dynamics of forced migration is essential for policy-making and for delivering humanitarian assistance. Existing work is hindered by a reliance on observational data which is only available well after the fact. In this work, we study the efficacy of a data-driven agent-based framework motivated by social and behavioral theory in predicting outflow of migrants as a result of conflict events during the initial phase of the Ukraine war. We discuss policy use cases for the proposed framework by demonstrating how it can leverage refugee demographic details to answer pressing policy questions. We also show how to incorporate conflict forecast scenarios to predict future conflict-induced migration flows. Detailed future migration estimates across various conflict scenarios can both help to reduce policymaker uncertainty and improve allocation and staging of limited humanitarian resources in crisis settings.

12.
medRxiv ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37873156

RESUMO

Across many fields, scenario modeling has become an important tool for exploring long-term projections and how they might depend on potential interventions and critical uncertainties, with relevance to both decision makers and scientists. In the past decade, and especially during the COVID-19 pandemic, the field of epidemiology has seen substantial growth in the use of scenario projections. Multiple scenarios are often projected at the same time, allowing important comparisons that can guide the choice of intervention, the prioritization of research topics, or public communication. The design of the scenarios is central to their ability to inform important questions. In this paper, we draw on the fields of decision analysis and statistical design of experiments to propose a framework for scenario design in epidemiology, with relevance also to other fields. We identify six different fundamental purposes for scenario designs (decision making, sensitivity analysis, value of information, situational awareness, horizon scanning, and forecasting) and discuss how those purposes guide the structure of scenarios. We discuss other aspects of the content and process of scenario design, broadly for all settings and specifically for multi-model ensemble projections. As an illustrative case study, we examine the first 17 rounds of scenarios from the U.S. COVID-19 Scenario Modeling Hub, then reflect on future advancements that could improve the design of scenarios in epidemiological settings.

13.
BMC Genomics ; 13 Suppl 2: S3, 2012 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-22537298

RESUMO

BACKGROUND: Many important biological problems can be modeled as contagion diffusion processes over interaction networks. This article shows how the EpiSimdemics interaction-based simulation system can be applied to the general contagion diffusion problem. Two specific problems, computational epidemiology and human immune system modeling, are given as examples. We then show how the graphics processing unit (GPU) within each compute node of a cluster can effectively be used to speed-up the execution of these types of problems. RESULTS: We show that a single GPU can accelerate the EpiSimdemics computation kernel by a factor of 6 and the entire application by a factor of 3.3, compared to the execution time on a single core. When 8 CPU cores and 2 GPU devices are utilized, the speed-up of the computational kernel increases to 9.5. When combined with effective techniques for inter-node communication, excellent scalability can be achieved without significant loss of accuracy in the results. CONCLUSIONS: We show that interaction-based simulation systems can be used to model disparate and highly relevant problems in biology. We also show that offloading some of the work to GPUs in distributed interaction-based simulations can be an effective way to achieve increased intra-node efficiency.


Assuntos
Simulação por Computador , Epidemias/estatística & dados numéricos , Algoritmos , Busca de Comunicante , Humanos , Modelos Estatísticos , Rede Social , Software
14.
medRxiv ; 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34127979

RESUMO

High resolution mobility datasets have become increasingly available in the past few years and have enabled detailed models for infectious disease spread including those for COVID-19. However, there are open questions on how such a mobility data can be used effectively within epidemic models and for which tasks they are best suited. In this paper, we extract a number of graph-based proximity metrics from high resolution cellphone trace data from X-Mode and use it to study COVID-19 epidemic spread in 50 land grant university counties in the US. We present an approach to estimate the effect of mobility on cases by fitting an ODE based model and performing multivariate linear regression to explain the estimated time varying transmissibility. We find that, while mobility plays a significant role, the contribution is heterogeneous across the counties, as exemplified by a subsequent correlation analysis. We subsequently evaluate the metrics’ utility for case surge prediction defined as a supervised classification problem, and show that the learnt model can predict surges with 95% accuracy and 87% F1-score.

15.
medRxiv ; 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33655263

RESUMO

The COVID-19 global outbreak represents the most significant epidemic event since the 1918 influenza pandemic. Simulations have played a crucial role in supporting COVID-19 planning and response efforts. Developing scalable workflows to provide policymakers quick responses to important questions pertaining to logistics, resource allocation, epidemic forecasts and intervention analysis remains a challenging computational problem. In this work, we present scalable high performance computing-enabled workflows for COVID-19 pandemic planning and response. The scalability of our methodology allows us to run fine-grained simulations daily, and to generate county-level forecasts and other counter-factual analysis for each of the 50 states (and DC), 3140 counties across the USA. Our workflows use a hybrid cloud/cluster system utilizing a combination of local and remote cluster computing facilities, and using over 20,000 CPU cores running for 6-9 hours every day to meet this objective. Our state (Virginia), state hospital network, our university, the DOD and the CDC use our models to guide their COVID-19 planning and response efforts. We began executing these pipelines March 25, 2020, and have delivered and briefed weekly updates to these stakeholders for over 30 weeks without interruption.

16.
Nature ; 429(6988): 180-4, 2004 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15141212

RESUMO

Most mathematical models for the spread of disease use differential equations based on uniform mixing assumptions or ad hoc models for the contact process. Here we explore the use of dynamic bipartite graphs to model the physical contact patterns that result from movements of individuals between specific locations. The graphs are generated by large-scale individual-based urban traffic simulations built on actual census, land-use and population-mobility data. We find that the contact network among people is a strongly connected small-world-like graph with a well-defined scale for the degree distribution. However, the locations graph is scale-free, which allows highly efficient outbreak detection by placing sensors in the hubs of the locations network. Within this large-scale simulation framework, we then analyse the relative merits of several proposed mitigation strategies for smallpox spread. Our results suggest that outbreaks can be contained by a strategy of targeted vaccination combined with early detection without resorting to mass vaccination of a population.


Assuntos
Surtos de Doenças/prevenção & controle , Modelos Biológicos , Varíola/prevenção & controle , Varíola/transmissão , Saúde da População Urbana , População Urbana , Busca de Comunicante , Surtos de Doenças/estatística & dados numéricos , Humanos , Varíola/diagnóstico , Varíola/epidemiologia , Vacina Antivariólica , Fatores de Tempo , Vacinação/métodos
17.
PLoS One ; 15(11): e0242453, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33232347

RESUMO

There is large interest in networked social science experiments for understanding human behavior at-scale. Significant effort is required to perform data analytics on experimental outputs and for computational modeling of custom experiments. Moreover, experiments and modeling are often performed in a cycle, enabling iterative experimental refinement and data modeling to uncover interesting insights and to generate/refute hypotheses about social behaviors. The current practice for social analysts is to develop tailor-made computer programs and analytical scripts for experiments and modeling. This often leads to inefficiencies and duplication of effort. In this work, we propose a pipeline framework to take a significant step towards overcoming these challenges. Our contribution is to describe the design and implementation of a software system to automate many of the steps involved in analyzing social science experimental data, building models to capture the behavior of human subjects, and providing data to test hypotheses. The proposed pipeline framework consists of formal models, formal algorithms, and theoretical models as the basis for the design and implementation. We propose a formal data model, such that if an experiment can be described in terms of this model, then our pipeline software can be used to analyze data efficiently. The merits of the proposed pipeline framework is elaborated by several case studies of networked social science experiments.


Assuntos
Processamento Eletrônico de Dados , Modelos Teóricos , Comportamento Social , Ciências Sociais/métodos , Software , Algoritmos , Humanos
18.
Complex Netw Appl VII (2018) ; 812: 524-535, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-34308431

RESUMO

Understanding the structural and dynamical properties of food networks is critical for food security and social welfare. Here, we analyze international trade networks corresponding to four solanaceous crops obtained using the Food and Agricultural Organization trade database using Moore-Shannon network reliability. We present a novel approach to identify important dynamics-induced clusters of highly-connected nodes in a directed weighted network. Our analysis shows that the structure and dynamics can greatly vary across commodities. However, a consistent pattern that we observe in these commodity-specific networks is that almost all clusters that are formed are between adjacent countries in regions where liberal bilateral trade relations exist. Our analysis of networks of different years shows that intensification of trade has led to increased size of clusters, which implies that the number of countries spared from the network effects of disruption is reducing. Finally, applying this method to the aggregate network obtained by combining the four networks reveals clusters very different from those found in the constituent networks.

19.
Artigo em Inglês | MEDLINE | ID: mdl-34305482

RESUMO

Computational epidemiologists frequently employ large-scale agent-based simulations of human populations to study disease outbreaks and assess intervention strategies. The agents used in such simulations rarely capture the real-world decision-making of human beings. An absence of realistic agent behavior can undermine the reliability of insights generated by such simulations and might make them ill-suited for informing public health policies. In this paper, we address this problem by developing a methodology to create and calibrate an agent decision making model for a large multi-agent simulation, using survey data. Our method optimizes a cost vector associated with the various behaviors to match the behavior distributions observed in a detailed survey of human behaviors during influenza outbreaks. Our approach is a data-driven way of incorporating decision making for agents in large-scale epidemic simulations.

20.
J Healthc Inform Res ; 1(2): 260-303, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35415398

RESUMO

Computational epidemiology seeks to develop computational methods to study the distribution and determinants of health-related states or events (including disease), and the application of this study to the control of diseases and other health problems. Recent advances in computing and data sciences have led to the development of innovative modeling environments to support this important goal. The datasets used to drive the dynamic models as well as the data produced by these models presents unique challenges owing to their size, heterogeneity and diversity. These datasets form the basis of effective and easy to use decision support and analytical environments. As a result, it is important to develop scalable data management systems to store, manage and integrate these datasets. In this paper, we develop EpiK-a knowledge base that facilitates the development of decision support and analytical environments to support epidemic science. An important goal is to develop a framework that links the input as well as output datasets to facilitate effective spatio-temporal and social reasoning that is critical in planning and intervention analysis before and during an epidemic. The data management framework links modeling workflow data and its metadata using a controlled vocabulary. The metadata captures information about storage, the mapping between the linked model and the physical layout, and relationships to support services. EpiK is designed to support agent-based modeling and analytics frameworks-aggregate models can be seen as special cases and are thus supported. We use semantic web technologies to create a representation of the datasets that encapsulates both the location and the schema heterogeneity. The choice of RDF as a representation language is motivated by the diversity and growth of the datasets that need to be integrated. A query bank is developed-the queries capture a broad range of questions that can be posed and answered during a typical case study pertaining to disease outbreaks. The queries are constructed using SPARQL Protocol and RDF Query Language (SPARQL) over the EpiK. EpiK can hide schema and location heterogeneity while efficiently supporting queries that span the computational epidemiology modeling pipeline: from model construction to simulation output. We show that the performance of benchmark queries varies significantly with respect to the choice of hardware underlying the database and resource description framework (RDF) engine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA