Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Cell ; 75(3): 483-497.e9, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31253574

RESUMO

In mammals, ∼100 deubiquitinases act on ∼20,000 intracellular ubiquitination sites. Deubiquitinases are commonly regarded as constitutively active, with limited regulatory and targeting capacity. The BRCA1-A and BRISC complexes serve in DNA double-strand break repair and immune signaling and contain the lysine-63 linkage-specific BRCC36 subunit that is functionalized by scaffold subunits ABRAXAS and ABRO1, respectively. The molecular basis underlying BRCA1-A and BRISC function is currently unknown. Here we show that in the BRCA1-A complex structure, ABRAXAS integrates the DNA repair protein RAP80 and provides a high-affinity binding site that sequesters the tumor suppressor BRCA1 away from the break site. In the BRISC structure, ABRO1 binds SHMT2α, a metabolic enzyme enabling cancer growth in hypoxic environments, which we find prevents BRCC36 from binding and cleaving ubiquitin chains. Our work explains modularity in the BRCC36 DUB family, with different adaptor subunits conferring diversified targeting and regulatory functions.


Assuntos
Proteína BRCA1/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Enzimas Desubiquitinantes/genética , Chaperonas de Histonas/genética , Neoplasias/genética , Sítios de Ligação/genética , Proteínas de Transporte/genética , Núcleo Celular/genética , Núcleo Celular/imunologia , Citoplasma/genética , Citoplasma/imunologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA/imunologia , Enzimas Desubiquitinantes/imunologia , Células HeLa , Humanos , Imunidade Celular/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Neoplasias/imunologia , Proteínas Associadas à Matriz Nuclear/genética , Ligação Proteica/genética , Ubiquitina/genética , Proteases Específicas de Ubiquitina/genética , Ubiquitinação/genética
2.
EMBO J ; 36(15): 2251-2262, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28666995

RESUMO

Cyclin-dependent kinases (Cdks) are principal drivers of cell division and are an important therapeutic target to inhibit aberrant proliferation. Cdk enzymatic activity is tightly controlled through cyclin interactions, posttranslational modifications, and binding of inhibitors such as the p27 tumor suppressor protein. Spy1/RINGO (Spy1) proteins bind and activate Cdk but are resistant to canonical regulatory mechanisms that establish cell-cycle checkpoints. Cancer cells exploit Spy1 to stimulate proliferation through inappropriate activation of Cdks, yet the mechanism is unknown. We have determined crystal structures of the Cdk2-Spy1 and p27-Cdk2-Spy1 complexes that reveal how Spy1 activates Cdk. We find that Spy1 confers structural changes to Cdk2 that obviate the requirement of Cdk activation loop phosphorylation. Spy1 lacks the cyclin-binding site that mediates p27 and substrate affinity, explaining why Cdk-Spy1 is poorly inhibited by p27 and lacks specificity for substrates with cyclin-docking sites. We identify mutations in Spy1 that ablate its ability to activate Cdk2 and to proliferate cells. Our structural description of Spy1 provides important mechanistic insights that may be utilized for targeting upregulated Spy1 in cancer.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Quinase 2 Dependente de Ciclina/química , Quinase 2 Dependente de Ciclina/metabolismo , Regulação Enzimológica da Expressão Gênica , Proteínas de Ciclo Celular/genética , Análise Mutacional de DNA , Fosforilação , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional
3.
J Biol Chem ; 290(23): 14626-36, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25903123

RESUMO

Single-stranded (ss) DNA-binding proteins (SSBs) bind and protect ssDNA intermediates formed during replication, recombination, and repair reactions. SSBs also directly interact with many different genome maintenance proteins to stimulate their enzymatic activities and/or mediate their proper cellular localization. We have identified an interaction formed between Escherichia coli SSB and ribonuclease HI (RNase HI), an enzyme that hydrolyzes RNA in RNA/DNA hybrids. The RNase HI·SSB complex forms by RNase HI binding the intrinsically disordered C terminus of SSB (SSB-Ct), a mode of interaction that is shared among all SSB interaction partners examined to date. Residues that comprise the SSB-Ct binding site are conserved among bacterial RNase HI enzymes, suggesting that RNase HI·SSB complexes are present in many bacterial species and that retaining the interaction is important for its cellular function. A steady-state kinetic analysis shows that interaction with SSB stimulates RNase HI activity by lowering the reaction Km. SSB or RNase HI protein variants that disrupt complex formation nullify this effect. Collectively our findings identify a direct RNase HI/SSB interaction that could play a role in targeting RNase HI activity to RNA/DNA hybrid substrates within the genome.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Ribonuclease H/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Ativação Enzimática , Escherichia coli/química , Proteínas de Escherichia coli/química , Modelos Moleculares , Mapas de Interação de Proteínas , Ribonuclease H/química
4.
EMBO J ; 30(20): 4236-47, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21857649

RESUMO

Interactions between single-stranded DNA-binding proteins (SSBs) and the DNA replication machinery are found in all organisms, but the roles of these contacts remain poorly defined. In Escherichia coli, SSB's association with the χ subunit of the DNA polymerase III holoenzyme has been proposed to confer stability to the replisome and to aid delivery of primers to the lagging-strand DNA polymerase. Here, the SSB-binding site on χ is identified crystallographically and biochemical and cellular studies delineate the consequences of destabilizing the χ/SSB interface. An essential role for the χ/SSB interaction in lagging-strand primer utilization is not supported. However, sequence changes in χ that block complex formation with SSB lead to salt-dependent uncoupling of leading- and lagging-strand DNA synthesis and to a surprising obstruction of the leading-strand DNA polymerase in vitro, pointing to roles for the χ/SSB complex in replisome establishment and maintenance. Destabilization of the χ/SSB complex in vivo produces cells with temperature-dependent cell cycle defects that appear to arise from replisome instability.


Assuntos
Proteínas de Bactérias/química , DNA Polimerase III/química , Replicação do DNA , DNA de Cadeia Simples/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sequência de Bases , DNA Polimerase III/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Holoenzimas/química , Holoenzimas/metabolismo , Dados de Sequência Molecular
5.
J Biol Chem ; 288(24): 17569-78, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23629733

RESUMO

Frequent collisions between cellular DNA replication complexes (replisomes) and obstacles such as damaged DNA or frozen protein complexes make DNA replication fork progression surprisingly sporadic. These collisions can lead to the ejection of replisomes prior to completion of replication, which, if left unrepaired, results in bacterial cell death. As such, bacteria have evolved DNA replication restart mechanisms that function to reload replisomes onto abandoned DNA replication forks. Here, we define a direct interaction between PriC, a key Escherichia coli DNA replication restart protein, and the single-stranded DNA-binding protein (SSB), a protein that is ubiquitously associated with DNA replication forks. PriC/SSB complex formation requires evolutionarily conserved residues from both proteins, including a pair of Arg residues from PriC and the C terminus of SSB. In vitro, disruption of the PriC/SSB interface by sequence changes in either protein blocks the first step of DNA replication restart, reloading of the replicative DnaB helicase onto an abandoned replication fork. Consistent with the critical role of PriC/SSB complex formation in DNA replication restart, PriC variants that cannot bind SSB are non-functional in vivo. Single-molecule experiments demonstrate that PriC binding to SSB alters SSB/DNA complexes, exposing single-stranded DNA and creating a platform for other proteins to bind. These data lead to a model in which PriC interaction with SSB remodels SSB/DNA structures at abandoned DNA replication forks to create a DNA structure that is competent for DnaB loading.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Sítios de Ligação , Ligação Competitiva , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/química , DnaB Helicases/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Mapeamento de Peptídeos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Técnicas do Sistema de Duplo-Híbrido
6.
J Biol Chem ; 286(14): 12075-85, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21297161

RESUMO

Bacterial "maintenance of genome stability protein A" (MgsA) and related eukaryotic enzymes play important roles in cellular responses to stalled DNA replication processes. Sequence information identifies MgsA enzymes as members of the clamp loader clade of AAA+ proteins, but structural information defining the family has been limited. Here, the x-ray crystal structure of Escherichia coli MgsA is described, revealing a homotetrameric arrangement for the protein that distinguishes it from other clamp loader clade AAA+ proteins. Each MgsA protomer is composed of three elements as follows: ATP-binding and helical lid domains (conserved among AAA+ proteins) and a tetramerization domain. Although the tetramerization domains bury the greatest amount of surface area in the MgsA oligomer, each of the domains participates in oligomerization to form a highly intertwined quaternary structure. Phosphate is bound at each AAA+ ATP-binding site, but the active sites do not appear to be in a catalytically competent conformation due to displacement of Arg finger residues. E. coli MgsA is also shown to form a complex with the single-stranded DNA-binding protein through co-purification and biochemical studies. MgsA DNA-dependent ATPase activity is inhibited by single-stranded DNA-binding protein. Together, these structural and biochemical observations provide insights into the mechanisms of MgsA family AAA+ proteins.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Ligação Proteica/genética , Ligação Proteica/fisiologia , Multimerização Proteica/genética , Multimerização Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Ressonância de Plasmônio de Superfície , Ultracentrifugação
7.
MethodsX ; 7: 100791, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32021826

RESUMO

Measuring total nitrogen, nitrate, and nitrite is critical for compliance with water safety standards. Previous methods for measuring total nitrogen were hazardous, time consuming, and expensive. Here we report a method for measuring total nitrogen in water and soil using alkaline persulfate digestion combined with a Nitrate Reductase assay. In this method the alkaline persulfate reaction oxidizes all nitrogen present in the sample to nitrate, Nitrate Reductase then is used to catalyze the reduction of nitrate to nitrite in the presence of NADH. The nitrite is then treated with Griess reagents to produce a pink color. The absorbance of this color is measured at 540 nm using a spectrophotometer and when compared to a standard curve of nitrate, treated with both the reduction and colorizing steps, can be used to determine the total nitrogen content of measured samples. This method customizes the measurement of total nitrogen by combining alkaline persulfate digestion with a Nitrate Reductase assay using enzyme based green chemistry. •Customization of total nitrogen analysis by combining alkaline persulfate digestion, driving all nitrogen to nitrate, with a colorimetric nitrate reductase assay•Nitrate reductase catalyzes all nitrate, produced by alkaline persulfate digestion and present in the original sample, to nitrite•Nitrite is measured by the addition of sulfanilamide and N-(1-napthyl)ethylenediamine dihydrochloride, resulting in a pink color.

8.
Elife ; 82019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31134895

RESUMO

Intrinsically disordered transcription factor transactivation domains (TADs) function through structural plasticity, adopting ordered conformations when bound to transcriptional co-regulators. Many transcription factors contain a negative regulatory domain (NRD) that suppresses recruitment of transcriptional machinery through autoregulation of the TAD. We report the solution structure of an autoinhibited NRD-TAD complex within FoxM1, a critical activator of mitotic gene expression. We observe that while both the FoxM1 NRD and TAD are primarily intrinsically disordered domains, they associate and adopt a structured conformation. We identify how Plk1 and Cdk kinases cooperate to phosphorylate FoxM1, which releases the TAD into a disordered conformation that then associates with the TAZ2 or KIX domains of the transcriptional co-activator CBP. Our results support a mechanism of FoxM1 regulation in which the TAD undergoes switching between disordered and different ordered structures.


Assuntos
Ativação Enzimática , Proteína Forkhead Box M1/química , Proteína Forkhead Box M1/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fragmentos de Peptídeos/metabolismo , Fosforilação , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sialoglicoproteínas/metabolismo , Quinase 1 Polo-Like
9.
Nat Commun ; 7: 12301, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27465258

RESUMO

The MuvB complex recruits transcription factors to activate or repress genes with cell cycle-dependent expression patterns. MuvB contains the DNA-binding protein LIN54, which directs the complex to promoter cell cycle genes homology region (CHR) elements. Here we characterize the DNA-binding properties of LIN54 and describe the structural basis for recognition of a CHR sequence. We biochemically define the CHR consensus as TTYRAA and determine that two tandem cysteine rich regions are required for high-affinity DNA association. A crystal structure of the LIN54 DNA-binding domain in complex with a CHR sequence reveals that sequence specificity is conferred by two tyrosine residues, which insert into the minor groove of the DNA duplex. We demonstrate that this unique tyrosine-mediated DNA binding is necessary for MuvB recruitment to target promoters. Our results suggest a model in which MuvB binds near transcription start sites and plays a role in positioning downstream nucleosomes.


Assuntos
Ciclo Celular/genética , Regiões Promotoras Genéticas , Homologia de Sequência do Ácido Nucleico , Transativadores/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular , Sequência Consenso , Cristalografia por Raios X , DNA/metabolismo , Humanos , Nucleossomos/metabolismo , Ligação Proteica , Domínios Proteicos , Transativadores/química , Tirosina/metabolismo
10.
PLoS One ; 8(3): e58765, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23536821

RESUMO

Antibacterial compounds typically act by directly inhibiting essential bacterial enzyme activities. Although this general mechanism of action has fueled traditional antibiotic discovery efforts for decades, new antibiotic development has not kept pace with the emergence of drug resistant bacterial strains. These limitations have severely restricted the therapeutic tools available for treating bacterial infections. Here we test an alternative antibacterial lead-compound identification strategy in which essential protein-protein interactions are targeted rather than enzymatic activities. Bacterial single-stranded DNA-binding proteins (SSBs) form conserved protein interaction "hubs" that are essential for recruiting many DNA replication, recombination, and repair proteins to SSB/DNA nucleoprotein substrates. Three small molecules that block SSB/protein interactions are shown to have antibacterial activity against diverse bacterial species. Consistent with a model in which the compounds target multiple SSB/protein interactions, treatment of Bacillus subtilis cultures with the compounds leads to rapid inhibition of DNA replication and recombination, and ultimately to cell death. The compounds also have unanticipated effects on protein synthesis that could be due to a previously unknown role for SSB/protein interactions in translation or to off-target effects. Our results highlight the potential of targeting protein-protein interactions, particularly those that mediate genome maintenance, as a powerful approach for identifying new antibacterial compounds.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Genoma Bacteriano , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Permeabilidade da Membrana Celular , Replicação do DNA/efeitos dos fármacos , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Ligação Proteica/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Recombinases Rec A/metabolismo
11.
Methods Mol Biol ; 922: 1-21, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22976174

RESUMO

Double-stranded (ds) DNA contains all of the necessary genetic information, although practical use of this information requires unwinding of the duplex DNA. DNA unwinding creates single-stranded (ss) DNA intermediates that serve as templates for myriad cellular functions. Exposure of ssDNA presents several problems to the cell. First, ssDNA is thermodynamically less stable than dsDNA, which leads to spontaneous formation of duplex secondary structures that impede genome maintenance processes. Second, relative to dsDNA, ssDNA is hypersensitive to chemical and nucleolytic attacks that can cause damage to the genome. Cells deal with these potential problems by encoding specialized ssDNA-binding proteins (SSBs) that bind to and stabilize ssDNA structures required for essential genomic processes. SSBs are essential proteins found in all domains of life. SSBs bind ssDNA with high affinity and in a sequence-independent manner and, in doing so, SSBs help to form the central nucleoprotein complex substrate for DNA replication, recombination, and repair processes. While SSBs are found in every organism, the proteins themselves share surprisingly little sequence similarity, subunit composition, and oligomerization states. All SSB proteins contain at least one DNA-binding oligonucleotide/oligosaccharide binding (OB) fold, which consists minimally of a five stranded beta-sheet arranged as a beta barrel capped by a single alpha helix. The OB fold is responsible for both ssDNA binding and oligomerization (for SSBs that operate as oligomers). The overall organization of OB folds varies between bacteria, eukaryotes, and archaea. As part of SSB/ssDNA cellular structures, SSBs play direct roles in the DNA replication, recombination, and repair. In many cases, SSBs have been found to form specific complexes with diverse genome maintenance proteins, often helping to recruit SSB/ssDNA-processing enzymes to the proper cellular sites of action. This clustering of genome maintenance factors can help to stimulate and coordinate the activities of individual enzymes and is also important for dislodging SSB from ssDNA. These features support a model in which DNA metabolic processes have evolved to work on ssDNA/SSB nucleoprotein filaments rather than on naked ssDNA. In this volume, methods are described to interrogate SSB-DNA and SSB-protein binding functions along with approaches that aim to understand the cellular functions of SSB. This introductory chapter offers a general overview of SSBs that focuses on their structures, DNA-binding mechanisms, and protein-binding partners.


Assuntos
Reparo do DNA/fisiologia , Replicação do DNA/fisiologia , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Recombinação Genética/fisiologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética
12.
Methods Mol Biol ; 922: 151-3, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22976182

RESUMO

Bacterial single-strand DNA-binding protein (SSB) interacts with many proteins involved in the diverse process of genome maintenance. The interactions are mediated by the essential and conserved amphipathic C-terminus (SSB-Ct). SSB plays a critical role in localizing and stimulating the activity of a wide variety of DNA-processing proteins. The interaction partners have been identified and studied using a variety of methods, one of which, ammonium sulfate co-precipitation, is described here.


Assuntos
Sulfato de Amônio/metabolismo , Proteínas de Bactérias/metabolismo , Precipitação Química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Bactérias/genética , Biologia Molecular/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA